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This Tutorial: The Outline
• Session I: Introduction of Basic Low-dimensional Models

• Session II: Understanding Low-Dimensional Structures in Representation Learning
− Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning: 

Algebraic and Geometric Perspectives

− Lec 2.2: Emergency of Low-dimensional Representations in Deep Models

• Session III: Understanding Low-Dimensional Structures in Diffusion Generative 
Models
− Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models

− Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion 
Models in Scientific Applications 

• Session IV: Designing Deep Networks for Pursuing Low-Dimensional 
Structures
− Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction

− Lec 4.2: White-Box Transformers via Sparse Rate Reduction

• Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic



Classical Low-dimension Model: GPCA

• Generalized PCA for mixture of subspaces [Vidal, Ma, Sastry 2005]



Modern (Deep) Representation Learning

Understand and interact with the physical world ⟹ nonlinear data
Coping with nonlinearity demands (deeper) representation
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? class? ?…
[adopted from K. He]

Modern (Deep) Representation Learning

• Deep learning builds multiple level of abstractions
− Learn representation from data by back-propagation

− Reduce domain knowledge and feature engineering

− Progressively “linearize” the nonlinear structure

requires domain 
knowledge 



The objective of learning:
Transform nonlinear and complex data to

 a linear, compact, and structured representation.

Neural collapse
representation (by
standard CE training)

Diverse & discriminative
representation (by MCR2

training, contrastive
learning)

• Empirically observe across many architectures and dataset

• Theoretically justify for a simple model

• Lead to principled ways for designing architectures to pursue Low-D
structures (see Session IV, afternoon)



The effect of depth:
Progressively transform a nonlinear and complex distribution to a

linear, compact and structured one

• Empirically observe across many architectures and dataset

• Theoretically justify for simplified models or geodesic curve connecting 
the two probability distributions

• Lead to principled ways for designing architectures to pursue Low-D
structures



Outline
• Low-D representation in Deep Classifiers:

− Neural Collapse (NC) Phenomena

− Understanding NC from optimization

− Progressive NC and transferability

• Low-D representation in Generative Models (MLLM)
− Compression-to-Expression Phenomena

• Conclusion

Data in the input space

Compression Expression



Multi-Class Image Classification Problems

• Labels: k = 1 ,…, K
− K = 10 classes (MNIST, CIFAR10, etc.)

− K = 1000 classes (ImageNet)
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One-hot labeling vectors inData in the input space

Neural network

• Assume balanced dataset where each class has n training samples

Cat Dog Truck



Deep Neural Network Classifiers

• Training a deep neural network

(e.g., convolution layers)

Input OutputFeature/representation

Features (dim = 3) of
CIFAR10 learned by
ResNet18

Initialization middle stage final stage



Representation: Neural Collapse

• Characterize the geometry of representations
for data separation

• [Papyan et al. 20] reveals common outcome
of learned features (output of last-hidden
layer) and classifiers across a variety of
architectures and dataset

• Precise mathematical structure within the
features and classifier



Neural Collapse: Symmetry and Structures

• Within-Class Variability Collapse (NC1): features of each class collapse to 
class-mean with zero variability (low-dimensional features):



Neural Collapse: Symmetry and Structures

• Convergence to Simplex ETF (NC2): the class means are linearly separable, 
have same length, and maximal angle between each other:



Neural Collapse: Symmetry and Structures

• Convergence to Self-Duality (NC3): the last-layer classifiers are perfectly 
matched with the class-means of features:



Why Neural Collapse

• NC is preferred among every successful exercise in feature engineering 
− Information Theory: Simplex ETF is the optimal Shannon code 

− Classification: Simple ETF features ⇒ Simplex ETF max-margin classifier 

Question: Given the prevalence of Neural Collapse across datasets and 
network architectures, why would such a phenomenon happen in training 

overparameterized networks? 



Dealing with a Highly Nonconvex Problem

The problem is highly nonconvex [Li et al’18]

• Nonlinear interactions across layers

• Nonlinear activation functions



Simplification: Unconstrained Features

Treat as a 
free optimization variable

Unconstrained features model
[Mixon et al’20]

• Assumption



Heavy Parameterization in CV Models
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ImageNet Classification Leaderboard from paperswithcode.com

• 1000 object classes

• Images:
⁃ 1.2 M train

⁃ 100K test

Performance & Model size keep increasing

# parameters >> # training samples

https://paperswithcode.com/


Simplification: Unconstrained Features

• Validity: Modern networks are highly overparameterized, that can approximate any point in 
the feature space
⁃ also called Layer-peeled model [Fang et al’21] and has been widely used recently for studying NC

J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022
W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020
C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021
W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021
J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.
F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.
T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.
A Rangamani, M Xu, A Banburski, Q Liao, T Poggio, Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss, 2021.



Experiment: NC Occurs on Random Labels/Inputs

• CIFAR-10 Dataset with random labels, MLP with varying network width

Within-Class Variability (NC1) Training ErrorSelf-Duality Collapse (NC3)

• Validity of unconstrained features model: Learned last-layer features 
and classifiers seems to be independent of input!

• The network memorizes training data in a very special way: NC

• We observe similar results on random inputs (random pixels)



Geometric Analysis of Global Landscape

Theorem (informal) Let feature dim d ≥ #class K-1.

(Global Optimality) Any global solution                   must satisfy NC:

• d ≥ K-1 is required to make K class-mean features equal angle with cosine angle −
1

𝐾−1
(the largest possible) between each pair.

• The features have zero global mean

• If H are constrained to be nonnegative (output of ReLu unit)
⁃ Bias term compensates for the global mean of the features



Geometric Analysis of Global Landscape 

• [Lu et al.’22] studies the following one-example-per class model

J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022
W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020
C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021
W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021
J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.
F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.
T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.
A Rangamani, M Xu, A Banburski, Q Liao, T Poggio, Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss, 2021.

• [E et al.’21, Fang et al.’21, Gral et al.’21] studies constrained formulation

• These work show that any global solution has NC, but 
− What about local minima? 

− The constraint formulations are not aligned with practice



General nonconvex problems

[1] Li*, Zhu*, Tang, ‘‘Alternating Minimizations Converge to Second-Order Optimal Solutions,’’ ICML 2019.
[2] Zhu et al, ‘‘A Linearly Convergent Method for Non-smooth Non-convex Optimization on Grassmannian with Applications to Robust Subspace and 
Dictionary Learning,’’ NeurIPS, 2019.

[3] Li, Chen, Deng, Qu, Zhu, So, ‘‘Weakly Convex Optimization over Stiefel Manifold Using Riemannian Subgradient-Type Methods,’’ SIOPT 2021
[4] Zhu, Li, Tang, Wakin, ‘‘The Global Optimization Geometry of Low-Rank Matrix Optimization,’’ TIT 2021.
[5] Zhu, Li, Tang, Wakin, ‘‘Global Optimality in Distributed Low-rank Matrix Factorization,,’’ NeurIPS 2018.
[6] Ding, Jiang, Chen, Qu, Zhu, ‘‘Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery“, NeurIPS 2021.
[7 ] Qu, Zhai, Li, Zhang, Zhu, ‘‘Analysis of the Optimization Landscapes for Overcomplete Representation Learning,’’ ICLR 2020.

[8] Zhu, Wang, Robinson, Naiman, Vidal, Tsakiris, ‘‘Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms,’’ NeurIPS 2018.
[9] Ding, Zhu, et al., ‘‘Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach“,  ICML, 2021

Theorem (informal) Let feature dim d ≥ #class K-1.

(Benign Global Landscape) The function has no spurious local minimizer and is 
a strict saddle function, with negative curvature for non-global critical points.

all local minima obey NC

strict saddle
(has no NC)

negative curvature

Our training problem

Geometric Analysis of Global Landscape



NC always Happens

Theorem (informal) (Global Optimality) Any global solution must satisfy NC

(Benign Global Landscape) The loss has no spurious local minimizer and is a 
strict saddle function, with negative curvature for non-global critical point.

Message: deep networks always learn Neural Collapse features and classifiers



Experiment: NC is Algorithm Independent

• ResNet18 on CIFAR-10 with different training algorithms

Within-Class Variability (NC1) Between-Class Separation (NC2) Self-Duality Collapse (NC3)

• The smaller the quantities, the severer NC

• NC across different training algorithms



NC always Happens

Theorem (informal) (Global Optimality) Any global solution must satisfy NC

(Benign Global Landscape) The loss has no spurious local minimizer and is a 
strict saddle function, with negative curvature for non-global critical point.

Message: deep networks always learn Neural Collapse features and classifiers

Zhou, You,  Li, Liu, Liu, Qu, Zhu, Are All Losses Created Equal: A Neural Collapse Perspective, NeurIPS 2022.
Peng Wang, Huikang Liu, Druv Pai, Yaodong Yu, Zhihui Zhu, Qing Qu, and Yi Ma, ‘‘A Global Geometric Analysis of Maximal Coding Rate Reduction," ICML, 2024.

• Holds for many other losses, such as focal, label smoothing, MSE
− all losses lead to largely identical features on training data and performance on testing

• Analysis can be extended to understand other training paradigms, such as
MCR2, self-supervised, etc.



All Loses Lead to Identical Features?

Theorem (informal) With feature dimension feature dim d ≥ #class K-1, the
losses (CE, FL, LS, MSE, etc) lead to the same NC features and classifiers

Implication for practical network: If network is large enough and trained
longer enough

⁃ All losses lead to largely identical features on training data (NC)

⁃ All losses lead to largely identical performance on test data

Zhou,…, Zhu, On the Optimization Landscape of Neural Collapse Under MSE Loss: Global Optimality with Unconstrained Features, ICML 2022.
Zhou, You,  Li, Liu, Liu, Qu, Zhu, Are All Losses Created Equal: A Neural Collapse Perspective, NeurIPS 2022.

• We study them under the unconstrained feature model:



Experiments: Different Loses on CIFAR10

• ResNet50, CIFAR-10 with different network width and training epoches

• Left bottom corner has larger difference than right top corner

• If network is large enough and trained longer enough:
⁃ All losses lead to largely identical features on training data (NC)

⁃ All losses lead to largely identical performance on test data

Cross-entropy Mean-squared Error Focal loss Label smoothing



Exploit NC for Practical Network Training 

Observation:  NC is prevalent, and classifier always 
converges to a Simplex ETF

• Implication 1: No need to learn the classifier
⁃ Just fix it as a Simplex ETF

⁃ Save 8%, 12%, and 53% parameters for 
ResNet50, DenseNet169, and ShuffleNet!

• Implication 2: No need of large feature dimension d
⁃ Just use feature dim d = #class K (e.g., d=10 for CIFAR10)

⁃ Further saves 21% and 4.5% parameters for ResNet18 and 
ResNet50!



Experiment: Fixed Classifier with d = K

• ResNet50 on CIFAR10 with different settings
− Learned classifier (default) VS fixed classifier as a simplex ETF

− Feature dim d = 2048 (default) VS d = 10

Self-Duality Collapse (NC3) Testing AccuracyTraining Accuracy

• Training with small dimensional features and fixed classifiers achieves on-
par performance with large dimensional features and learned classifiers.



• A non-comprehensive overview of related work on NC

Related Work on NC

• Theoretical analysis of NC
− Unconstrained features model (UFM)

− Deep unconstrained features model
[Tirer & Bruna’22, Súkeník et al.’24]

− Beyond UFM
▪ global optimality [Jacot et al.’24]

▪ gradient flow analysis [Min et al.’25]

− Loss design
▪ CE loss

▪ MSE loss [Han et al.’22, Zhou et al.’22]

▪ Supervised contrastive [Graf et al’21]

− Multi-label learning [Li et al’24]

− Large number of classes [Liu et al’23]

− Progressive NC [Wang et al.’23]

• Applications for understanding &
improving network performance
− Efficient training

− Transfer learning [Galanti et al.’22, Li et
al.’24]

− Imbalanced learning [Fang et al.’21]

− Continual learning [Yang et al.’23]

− Differential privacy [Wang et al’24]

− Robustness [Su et al’23]

− Generalization [Hui et al’22]

− Feature learning in intermediate layers [He
& Su’23, Rangamani et al.’23]

− LLM [Wu’24]



Implications on Transfer Learning

• Why transfer
learning is possible

• How to improve
transfer learning
performance
− initialization for the

new classifier

− efficient fine-tuning



Experiment: Fixed Classifier as Class-mean Features

• We can also promote NC3 (self-duality) by fixing the classifier as the
class-mean features (CMF) during training

• CMF achieves on-par performance with learned classifiers

Jiang, Zhou, Wang, Qu, Mixon, You, Zhu, Generalized Neural Collapse for a Large Number of Classes, ICML 2024

ResNet on CIFAR100



Experiment: Fixed Classifier as Class-mean Features

• CMF classifier improves Out-of-distribution (OOD) performance for fine-tuning 

Learnable Classifier CMF

97.00% 98.00%

87.42% 90.67%

• ResNet50 pretrained
on MoCo

• Fine-tuned for
CIFAR10

Test on CIFAR10 (ID)

Test on STL10 (OOD)

Jiang, Zhou, Wang, Qu, Mixon, You, Zhu, Generalized Neural Collapse for a Large Number of Classes, ICML 2024
Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution, ICLR 2022. 

• Since self-duality (NC3) always hold, CMF classifier can better preserve
properties of pretrained model during fine-tuning



Progressive separation from shallow to deep layers 

• From shallow to deep layers (effect of depths): progressive compression and
separation

• Effect of depth: creates progressive separation and collapse

He, Hangfeng, and Weijie J. Su. “A law of data separation in deep learning,” PNAS 2023.
Wang, Li,  Yaras,  Hu, Zhu, , Balzano,  Qu, Understanding Deep Representation Learning via Layerwise Feature Compression and Discrimination, JMLR 2025
Jinxin Zhou, Jiachen Jiang, Zhihui Zhu, Are all layers created equal: A neural collapse perspective, CPAL 2025.

deeper



Are all Layers Created Equal?

• Scaling up the model makes middle layers redundant

• Deeper layers excel at enhancing neural collapse (prone to memorization);
other layers are good for transfer learning

CIFAR10 ImageNet
Jinxin Zhou, Jiachen Jiang, Zhihui Zhu, Are all layers created equal: A neural collapse perspective, CPAL 2025.



Progressive Separation is Transferable 

• Progressive separation is transferable 
among different tasks (common in
medical domain)
− ResNet-34 pre-trained on ImageNet 

− Evaluate on CIFAR10 

− Model is fixed without fine-tuning 

− Train a linear classifier on top of the features 

• Layer-wise NC exhibits two phases on 
downstream tasks:
−  Phase 1: progressively decreasing (universal 

feature mapping) 

− Phase 2: progressively increasing (specific 
feature mapping) 

Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, Qing Qu, Principled and Efficient Transfer Learning of Deep Models via Neural Collapse, TMLR 2024.

fine-tune this layer!

ImageNet pretrained model evaluated
on CIFAR10 (no fine-tuning)



Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient 

(a) Illustration of layer fine-tuning (b) Fine-tuning results on CIFAR-10 



The effect of depth:
Progressively achieve this goal through layer-wise transformation

The objective of learning:
Transform nonlinear and complex data to

 a linear, compact, and structured representation.



Outline
• Low-D representation in Deep Classifiers:

− Neural Collapse (NC) Phenomena

− Understanding NC from optimization

− Progressive NC and transferability

• Low-D representation in Generative Models (LLM)
− Compression-to-Expression Phenomena

• Conclusion

Data in the input space

Compression Expression



Generative Models
Two popular and effective approaches to learn distribution 𝑃 𝑥1, 𝑥2 , … , 𝑥𝑛

• diffusion model (see Session III by Liyue and Qing, afternoon)

• autoregressive model: 𝑃 𝑥1 𝑃 𝑥2 𝑥1 … 𝑃 𝑥𝑛 𝑥1, … , 𝑥𝑛−1

• Natural language
conversation

𝑃 𝑦 𝑥

𝑥: prompt

𝑦: response



In-context Learning

• LLM can “learn” to solve tasks without weight updates



Letter Prediction Tasks

• Step 1: identify the “rule/task/pattern” from the demonstrations

• Step 2: apply it to the query token “m”

• Does the LLM perform ICL in the same way?

Prompt: a b, b c, g h, m n  

Prompt: a c, b d, g I, m 

Prompt: a a, b b, g g, m 

Prompt: a B, b C, g H, m 

o  

m  

N  

paired demonstrations query answer



In-context Learning

• Step 1: identify the “rule/task/pattern” from the demonstrations

• Step 2: apply it to the query token

• Does the MLLM perform ICL in the same way?

redPrompt: yellow green ⋯

Prompt: triangle circle ⋯

Prompt: solid stripes ⋯

square

dots

paired demonstrations query answer



How Do LLM Perform ICL

• The models are only pre-trained to predict next token. Why can they learn
the input-output relationship in the prompt?

• Different approaches for understanding the ICL ability
− Bayesian Perspective [Xie et al., 2021]

− Meta-learning Perspective [Chen et al., 2021]

− Meta-optimizer perspective [Oswald et al 2022, Ahn et al, 2023]

− Mechanistic Interpretations (induction heads in copy problems [Olsson et al., 2022])

− etc.

• But less emphasis on the internal representations within models

How do MLLMs extract and differentiate task information from 
shallow to deep layers during in-context learning?



Tracing Hidden Representation
• Study layer-wise representations

a b b c g h m 

n? 

…

…

• Denote the hidden representation of the last token at layer 𝑙 as ,
knowns as task vector or in-context vector

Shallow

Deep

Transformer

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.

S Liu, H Ye, L Xing, J Zou, In-context vectors: Making in context learning more effective and controllable through latent space steering , ICML 2024.



Metric for Compression & Discrimination
• For each ICL task 𝑡 (e.g. next letter prediction), generate 𝑁 promots

𝑎 → 𝑏, 𝑏 → 𝑐, 𝑐 → 𝑑, 𝑑 →Prompt 1:

𝑑 → 𝑒, 𝑙 → 𝑚, 𝑠 → 𝑡, 𝑢 →Prompt 2:
…

Prompt 𝑁: 𝑚 → 𝑛, 𝑓 → 𝑔, 𝑖 → 𝑗, 𝑘 →

• Define mean vector and variance



Metric for Compression & Discrimination

• TDNV (Task-Distance Normalized Variance) to capture the level of
compression and separation 

• Within-task Variance: how well the representation from the same task 
are compressed towards its own task mean

• Between-task Distance: how well the task means of different task are 
discriminated from each other

Following a similar conceptual framework to Class-Distance Normalized Variance (CDNV)[6] by viewing each task as a class.



From Compression to Expression/Expansion

• Compression phase: the model produces compact & discriminative
representation that captures the “rule/task/pattern” from the input data

• Expression phase: apply the compact representation to the input query

Progressive compression and then expression from shallow layers to deep layers

Compression Expression

Algorithmic Tasks

Jiachen Jiang, Yuxin Dong, Jinxin Zhou, Zhihui Zhu, From Compression to Expression: A Layerwise Analysis of In-Context Learning, 2025



Prevalence of the Phenomenon

Universality across model architectures (Transformer & State-Space Model) 



Prevalence of the Phenomenon
Universality across task domains

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.

Symbolic ICL (Beyond Algorithmic)



Prevalence of the Phenomenon

Multimodality ICL (Beyond Language)

Universality across task domains

Model: Qwen-VL

Brandon Huang, Chancharik Mitra, Assaf Arbelle, Leonid Karlinsky, Trevor Darrell, Roei Herzig, Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning, NeurIPS 2024



Compression-Expression Emerges During Training

Emergence during training

• Before training: flat TDNV values across all layers 
• During training: distinct U-shape curve emerges and deepens



Scaling Model Promotes Compression

Scaling up model size leads to more compressed representations

Compressed level correlates with the ICL performance.



Number of Demonstrations Promotes Compression

Increasing in-context lengths (num of demonstrations 𝐾) leads to 
more compressed representations.



Bias-variance Decomposition

• Different tasks induce task vectors in distinct 
directions, yet each task follows a consistent 
direction

• The variance within each task decreases



Decrease of Bias and Variance

Decrease of Bias: Decrease of Variance:

• A formal analysis for simplified models (linear attention)

Jiachen Jiang, Yuxin Dong, Jinxin Zhou, Zhihui Zhu, From Compression to Expression: A Layerwise Analysis of In-Context Learning, 2025



Task Vector Accuracy
• Query + task-vector is enough to perform ICL

a b b c g h k 

n? 

…

…

…

…

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.

S Liu, H Ye, L Xing, J Zou, In-context vectors: Making in context learning more effective and controllable through latent space steering , ICML 2024.

m 

Shallow

Deep

Transformer

• How much the hidden representation captures the task information



Early Exit Accuracy

Make prediction based on intermediate layer hidden states instead of last layer

DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. ACL 2020.

a b b c g h j 

k? 

…

…

Last Layer 

Classifier

k? 

Shallow

Deep

Transformer

• How much the hidden representation captures the query information



Layerwise Compression and Expression

• The most compact representation (smallest TDNV) achieves best Task 
Vector Accuracy (Query + task-vector ) 

• Early-exit Accuracy starts increasing after the most compact layer



Promoting Compression Improves Performance

Task-vector contrastive fine-tuning improves task-vector accuracy

• Method: during fine-tuning on ICL tasks, add contrastive loss on 
intermediate layer features to encourage compression

• Results: more compressed representations yield better performance; 
task-vector accuracy improves by 20%



Linear, compact, and structured representation emerges in deep
classifiers and (multimodal) large language models

Compression Expansion

The objective of learning: Transform nonlinear and complex data to
 a linear, compact, and structured representation.

The effect of depth: Progressively achieve this goal through layer-
wise transformation



This Tutorial: The Outline
• Session I: Introduction of Basic Low-dimensional Models

• Session II: Understanding Low-Dimensional Structures in Representation Learning
− Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning: 

Algebraic and Geometric Perspectives

− Lec 2.2: Emergency of Low-dimensional Representations in Deep Models

• Session III: Understanding Low-Dimensional Structures in Diffusion Generative 
Models (starts from 1PM)
− Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models

− Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion 
Models in Scientific Applications 

• Session IV: Designing Deep Networks for Pursuing Low-Dimensional 
Structures
− Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction

− Lec 4.2: White-Box Transformers via Sparse Rate Reduction

• Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic
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