Learning Deep Low-Dimensional Models from High-Dimensional Data: From Theory to Practice

Lecture 2-2: Emergency of Low-dimensional Representations in Deep Models

Zhihui Zhu
The Ohio State University

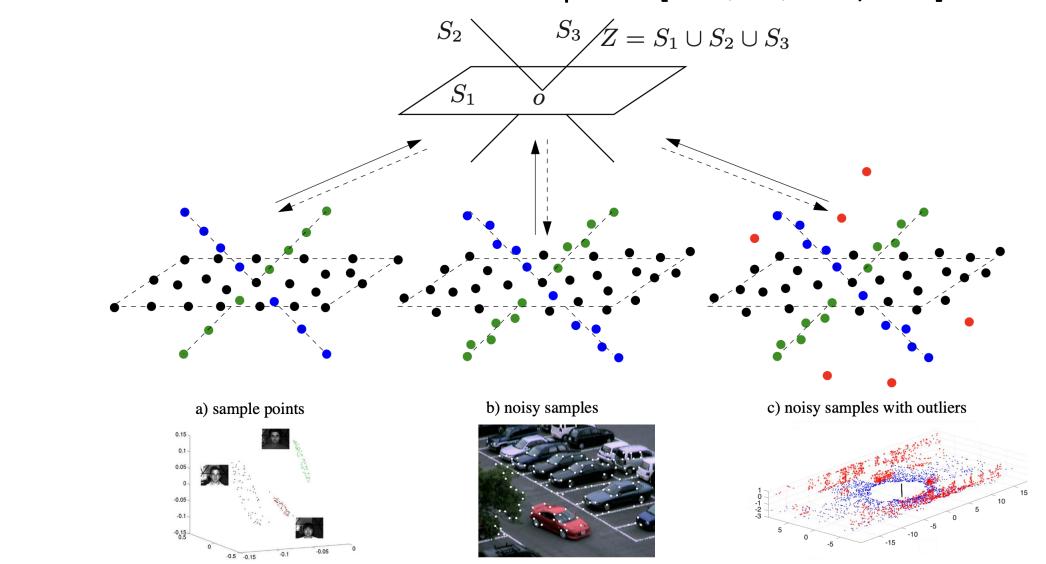
Oct 19, 2025, ICCV

This Tutorial: The Outline

- Session I: Introduction of Basic Low-dimensional Models
- Session II: Understanding Low-Dimensional Structures in Representation Learning
 - Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning:
 Algebraic and Geometric Perspectives
 - Lec 2.2: Emergency of Low-dimensional Representations in Deep Models
- Session III: Understanding Low-Dimensional Structures in Diffusion Generative Models
 - Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models
 - Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion Models in Scientific Applications
- Session IV: Designing Deep Networks for Pursuing Low-Dimensional Structures
 - Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
 - Lec 4.2: White-Box Transformers via Sparse Rate Reduction
- Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic

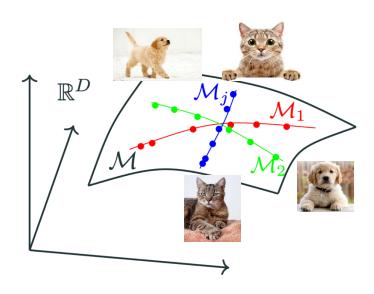
Classical Low-dimension Model: GPCA

Generalized PCA for mixture of subspaces [Vidal, Ma, Sastry 2005]

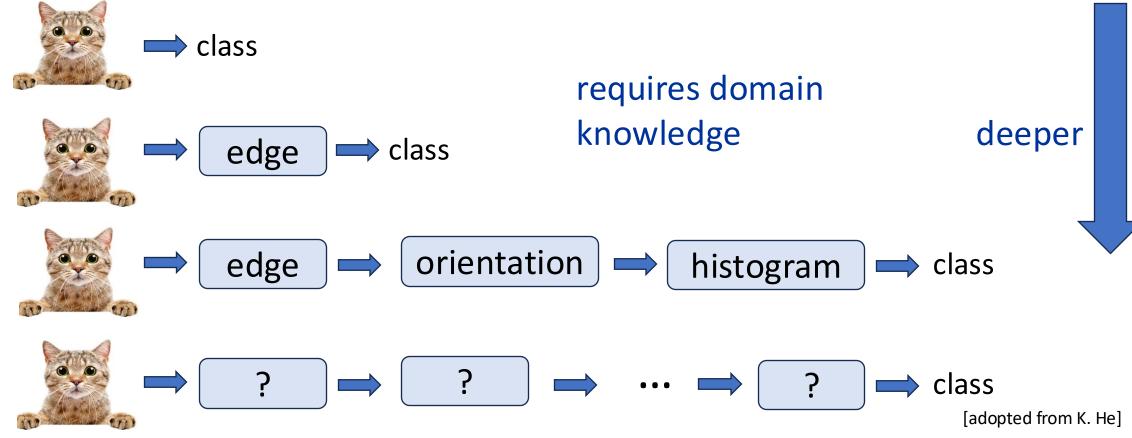


Modern (Deep) Representation Learning

Understand and interact with the physical world ⇒ *nonlinear data*Coping with nonlinearity demands (*deeper*) *representation*



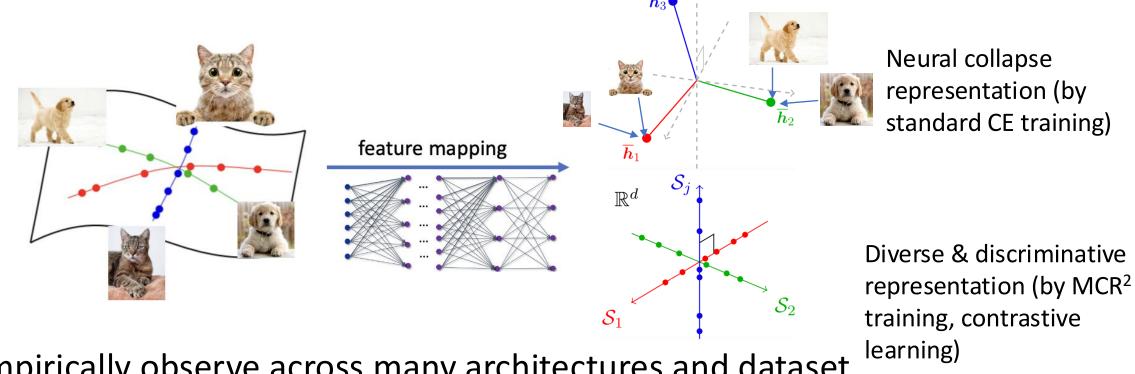
Modern (Deep) Representation Learning



- Deep learning builds multiple level of abstractions
 - Learn representation from data by back-propagation
 - Reduce domain knowledge and feature engineering
 - Progressively "linearize" the nonlinear structure

The objective of learning:

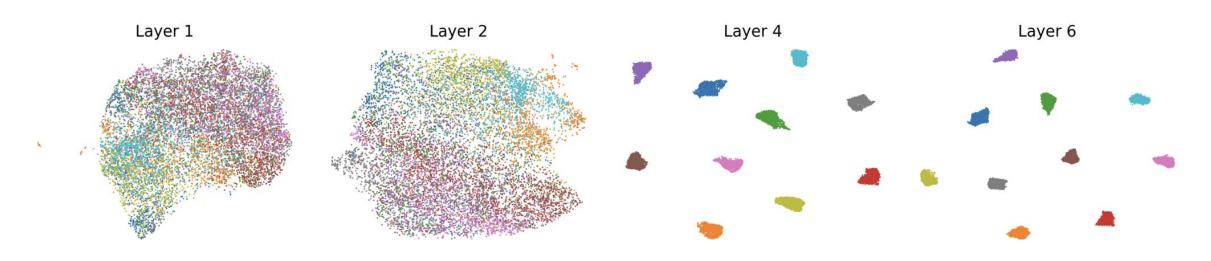
Transform nonlinear and complex data to a linear, compact, and structured representation.



- Empirically observe across many architectures and dataset
- Theoretically justify for a simple model
- Lead to principled ways for designing architectures to pursue Low-D structures (see Session IV, afternoon)

The effect of depth:

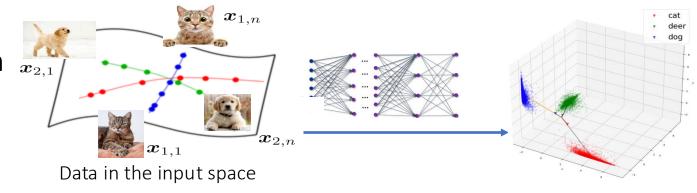
Progressively transform a nonlinear and complex distribution to a linear, compact and structured one



- Empirically observe across many architectures and dataset
- Theoretically justify for simplified models or geodesic curve connecting the two probability distributions
- Lead to principled ways for designing architectures to pursue Low-D structures

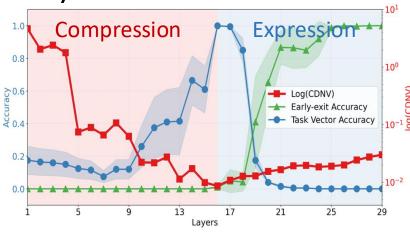
Outline

- Low-D representation in Deep Classifiers:
 - Neural Collapse (NC) Phenomena
 - Understanding NC from optimization
 - Progressive NC and transferability



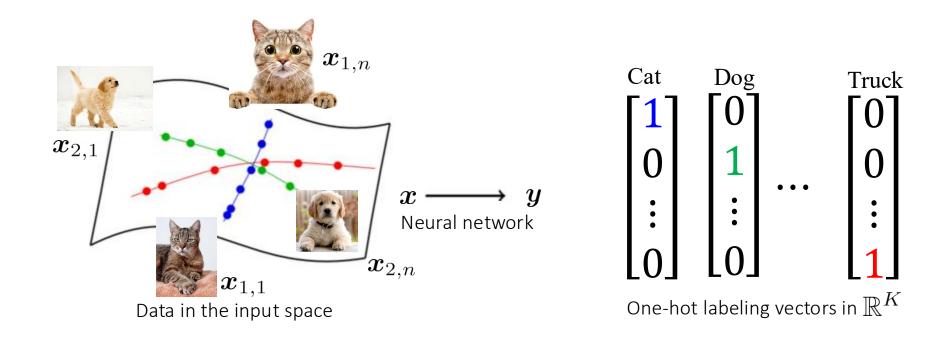
- Low-D representation in Generative Models (MLLM)
 - Compression-to-Expression Phenomena

Conclusion



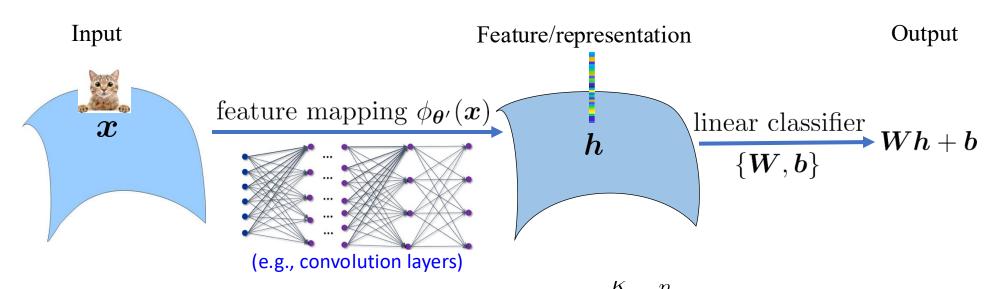
Multi-Class Image Classification Problems

- Labels: k = 1, ..., K
 - -K = 10 classes (MNIST, CIFAR10, etc.)
 - -K = 1000 classes (ImageNet)



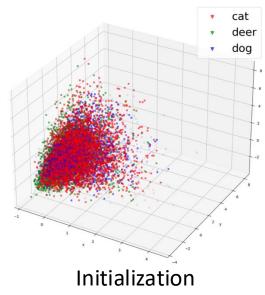
• Assume balanced dataset where each class has n training samples

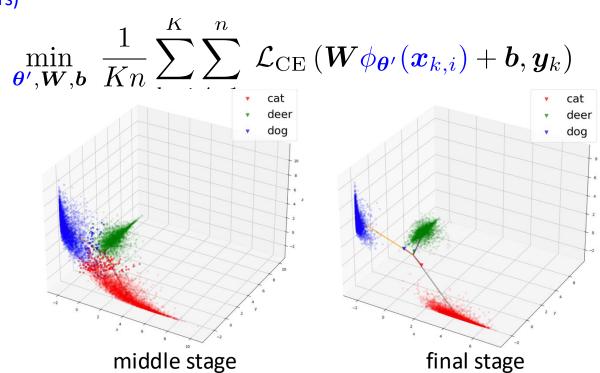
Deep Neural Network Classifiers



Training a deep neural network

Features (dim = 3) of CIFAR10 learned by ResNet18





Representation: Neural Collapse

 Characterize the geometry of representations for data separation

 [Papyan et al. 20] reveals common outcome of learned features (output of *last-hidden* layer) and classifiers across a variety of architectures and dataset

 Precise mathematical structure within the features and classifier

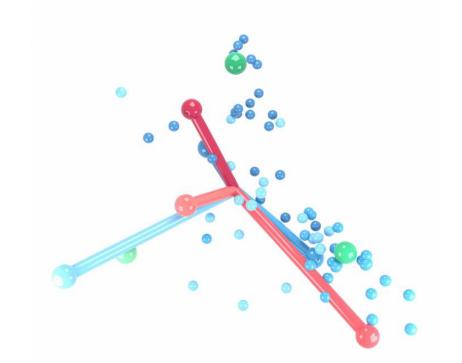
Prevalence of neural collapse during the terminal phase of deep learning training

O Vardan Papyan, X. Y. Han, and David L. Donoho

+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020; https://doi.org/10.1073/pnas.2015509117

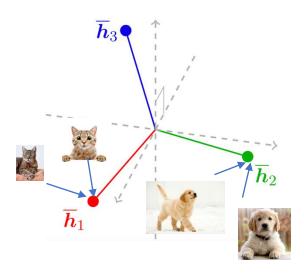
Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and Stéphane Mallari



Neural Collapse: Symmetry and Structures

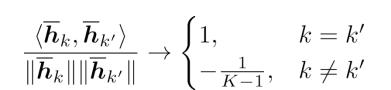
 Within-Class Variability Collapse (NC1): features of each class collapse to class-mean with zero variability (low-dimensional features):

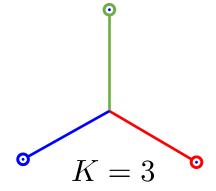
k-th class, i-th sample : $\boldsymbol{h}_{k,i} \to \overline{\boldsymbol{h}}_k$

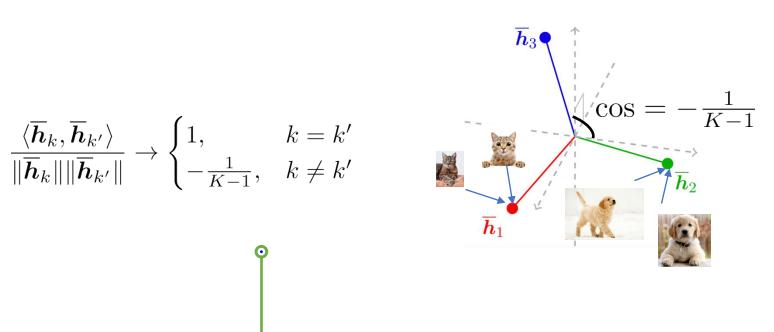


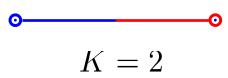
Neural Collapse: Symmetry and Structures

Convergence to Simplex ETF (NC2): the class means are linearly separable, have same length, and maximal angle between each other:







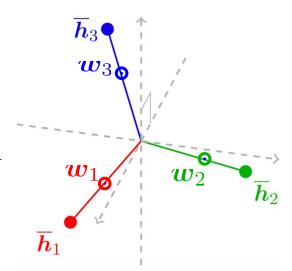


Neural Collapse: Symmetry and Structures

 Convergence to Self-Duality (NC3): the last-layer classifiers are perfectly matched with the class-means of features:

$$rac{oldsymbol{w}_k}{\|oldsymbol{w}_k\|}
ightarrow rac{oldsymbol{h}_k}{\|\overline{oldsymbol{h}}_k\|},$$

where \boldsymbol{w}_k represents the k-th row of \boldsymbol{W}

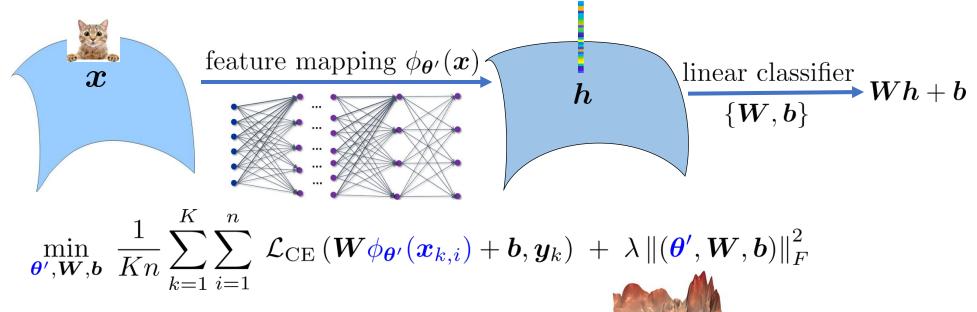


Why Neural Collapse

- NC is preferred among every successful exercise in feature engineering
 - Information Theory: Simplex ETF is the optimal Shannon code
 - Classification: Simple ETF features ⇒ Simplex ETF max-margin classifier

Question: Given the prevalence of Neural Collapse across datasets and network architectures, why would such a phenomenon happen in training overparameterized networks?

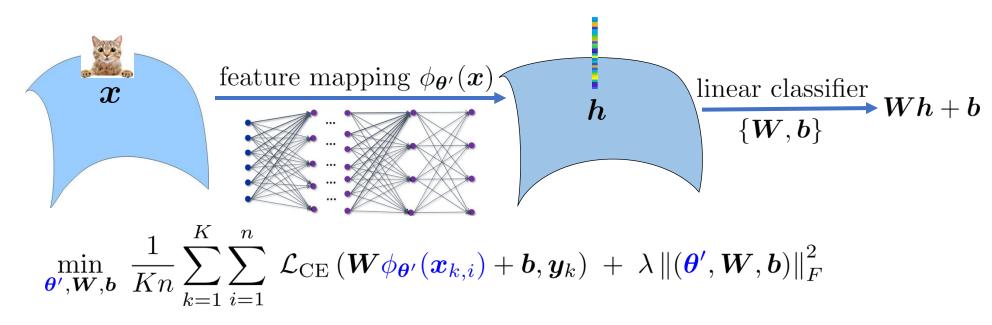
Dealing with a Highly Nonconvex Problem



The problem is highly nonconvex [Li et al'18]

- Nonlinear interactions across layers
- Nonlinear activation functions

Simplification: Unconstrained Features



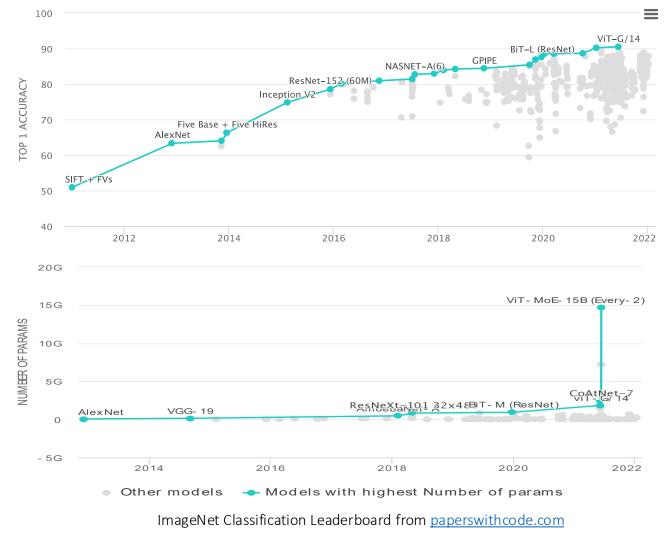
Assumption



Heavy Parameterization in CV Models

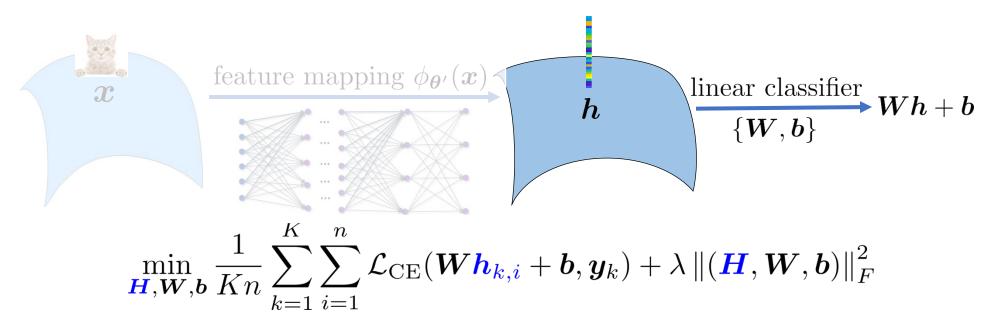
IM GENET

- 1000 object classes
- Images:
 - 1.2 M train
 - 100K test



Performance & Model size keep increasing # parameters >> # training samples

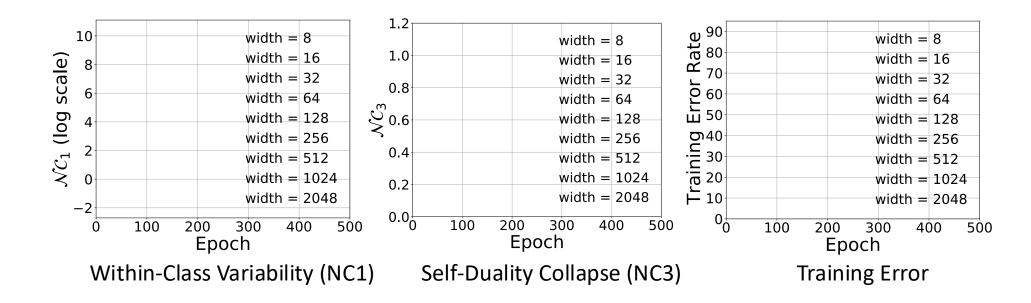
Simplification: Unconstrained Features



- **Validity**: Modern networks are highly **overparameterized**, that can approximate any point in the feature space
 - also called Layer-peeled model [Fang et al'21] and has been widely used recently for studying NC
- J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022
- W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
- D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020
- C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021
- W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021
- J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.
- F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.
- T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.
- A Rangamani, M Xu, A Banburski, Q Liao, T Poggio, Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss, 2021

Experiment: NC Occurs on Random Labels/Inputs

CIFAR-10 Dataset with random labels, MLP with varying network width



- Validity of unconstrained features model: Learned last-layer features and classifiers seems to be independent of input!
- The network memorizes training data in a very special way: NC
- We observe similar results on random inputs (random pixels)

Geometric Analysis of Global Landscape

$$\min_{\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{\text{CE}}(\boldsymbol{W} \boldsymbol{h}_{k,i} + \boldsymbol{b}, \boldsymbol{y}_{k}) + \lambda \left\| (\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}) \right\|_{F}^{2}$$

Theorem (informal) Let feature dim $d \ge \#$ class K-1.

(Global Optimality) Any global solution (W^*, H^*, b^*) must satisfy NC: $b^* = 0$ and

$$\underbrace{\boldsymbol{h}_{k,i}^{\star} = \overline{\boldsymbol{h}}_{k}}_{NC_{1}}, \quad \underbrace{\frac{\langle \overline{\boldsymbol{h}}_{k}^{\star}, \overline{\boldsymbol{h}}_{k'}^{\star} \rangle}{\|\overline{\boldsymbol{h}}_{k}^{\star}\| \|\overline{\boldsymbol{h}}_{k'}^{\star}\|}}_{NC_{2}} = \begin{cases} 1, & k = k' \\ -\frac{1}{K-1}, & k \neq k' \end{cases}, \quad \underbrace{\frac{\boldsymbol{w}^{k\star}}{\|\boldsymbol{w}^{k\star}\|} \rightarrow \frac{\overline{\boldsymbol{h}}_{k}^{\star}}{\|\overline{\boldsymbol{h}}_{k}^{\star}\|}}_{NC_{3}}$$

- $d \ge K$ -1 is required to make K class-mean features equal angle with cosine angle $-\frac{1}{K-1}$ (the largest possible) between each pair.
- The features have zero global mean
- If H are constrained to be nonnegative (output of ReLu unit)
 - Bias term compensates for the global mean of the features $m{b}
 ightarrow m{W} m{h}_G$

Geometric Analysis of Global Landscape

[Lu et al.'22] studies the following one-example-per class model

$$\min_{\boldsymbol{H}} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}_{CE}(\boldsymbol{h}_k, \boldsymbol{y}_k), \text{ s. t. } \|\boldsymbol{h}_k\|_2 = 1$$

• [E et al.'21, Fang et al.'21, Gral et al.'21] studies constrained formulation

$$\min_{\mathbf{W}, \mathbf{H}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{CE}(\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_{k}), \text{ s. t. } \|\mathbf{W}\|_{F}^{2} \leq C_{W}, \|\mathbf{H}\|_{F}^{2} \leq C_{H}$$

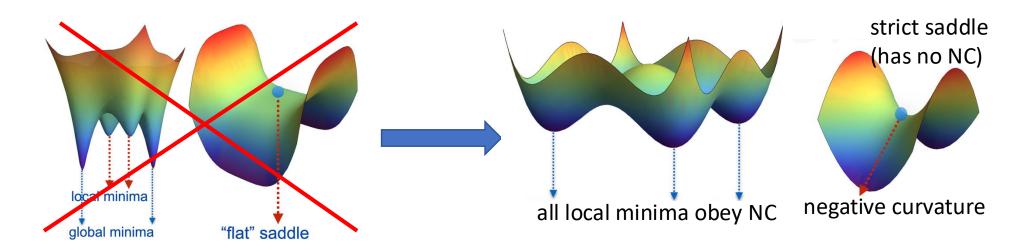
- These work show that any global solution has NC, but
 - What about local minima?
 - The constraint formulations are not aligned with practice
- J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022
- W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
- D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020
- C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021
- W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021
- J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.
- F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.
- T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.
- A Rangamani, M Xu, A Banburski, Q Liao, T Poggio, Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss, 2021.

Geometric Analysis of Global Landscape

$$\min_{\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{CE}(\boldsymbol{W} \boldsymbol{h}_{k,i} + \boldsymbol{b}, \boldsymbol{y}_{k}) + \lambda \left\| (\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}) \right\|_{F}^{2}$$

Theorem (informal) Let feature dim $d \ge \#$ class K-1.

(Benign Global Landscape) The function has no spurious local minimizer and is a strict saddle function, with negative curvature for non-global critical points.



General nonconvex problems

Our training problem

NC always Happens

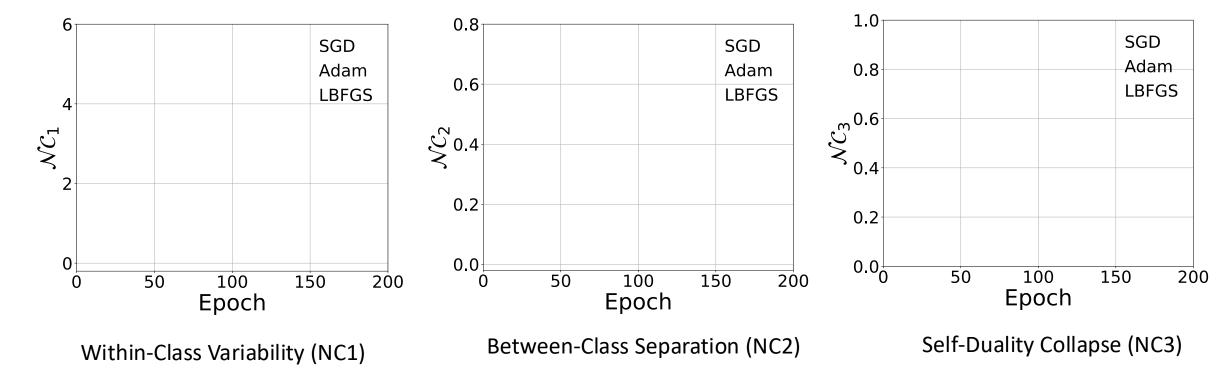
$$\min_{oldsymbol{H},oldsymbol{W},oldsymbol{b}} rac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{ ext{CE}}(oldsymbol{W}oldsymbol{h}_{k,i} + oldsymbol{b}, oldsymbol{y}_k)$$

Theorem (informal) (Global Optimality) Any global solution must satisfy NC (**Benign Global Landscape**) The loss has no spurious local minimizer and is a strict saddle function, with negative curvature for non-global critical point.

Message: deep networks always learn Neural Collapse features and classifiers

Experiment: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms



- The smaller the quantities, the severer NC
- NC across different training algorithms

NC always Happens

$$\min_{oldsymbol{H},oldsymbol{W},oldsymbol{b}} rac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{ ext{CE}}(oldsymbol{W}oldsymbol{h}_{k,i} + oldsymbol{b}, oldsymbol{y}_k)$$

Theorem (informal) (Global Optimality) Any global solution must satisfy NC (**Benign Global Landscape**) The loss has no spurious local minimizer and is a strict saddle function, with negative curvature for non-global critical point.

Message: deep networks always learn Neural Collapse features and classifiers

- Holds for many other losses, such as focal, label smoothing, MSE
 - all losses lead to largely identical features on training data and performance on testing
- Analysis can be extended to understand other training paradigms, such as MCR², self-supervised, etc.

All Loses Lead to Identical Features?

• We study them under the unconstrained feature model:

$$\min_{\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}(\boldsymbol{W} \boldsymbol{h}_{k,i} + \boldsymbol{b}, \boldsymbol{y}_{k}) + \lambda \left\| (\boldsymbol{H}, \boldsymbol{W}, \boldsymbol{b}) \right\|_{F}^{2}$$

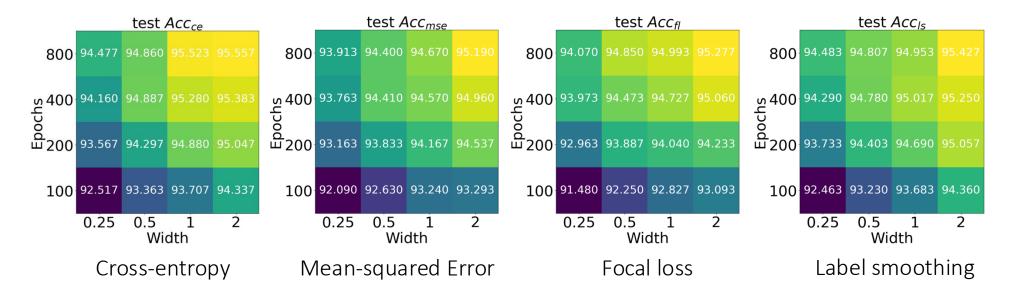
Theorem (informal) With feature dimension feature dim $d \ge \#$ class K-1, the losses (CE, FL, LS, MSE, etc) lead to the same NC features and classifiers

Implication for practical network: If network is large enough and trained longer enough

- All losses lead to largely identical features on training data (NC)
- All losses lead to largely identical performance on test data

Experiments: Different Loses on CIFAR10

ResNet50, CIFAR-10 with different network width and training epoches



- Left bottom corner has larger difference than right top corner
- If network is large enough and trained longer enough:
 - All losses lead to largely identical features on training data (NC)
 - All losses lead to largely identical performance on test data

Exploit NC for Practical Network Training

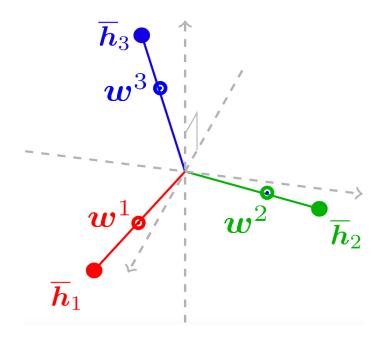
Observation: NC is prevalent, and classifier always converges to a Simplex ETF

Implication 1: No need to learn the classifier

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for ResNet50, DenseNet169, and ShuffleNet!

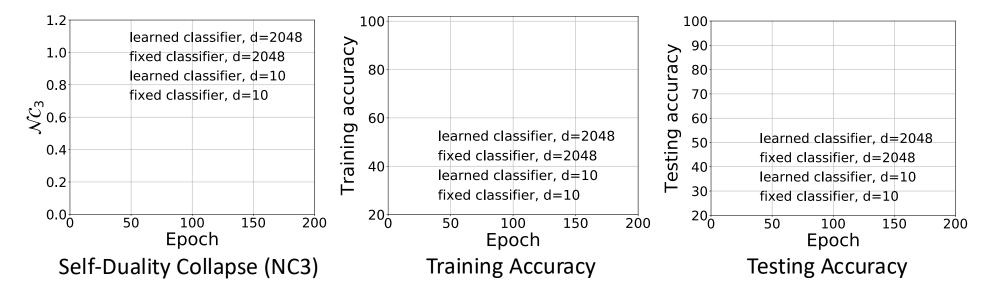
• Implication 2: No need of large feature dimension d

- Just use feature dim d = #class K (e.g., d=10 for CIFAR10)
- Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!



Experiment: Fixed Classifier with d = K

- ResNet50 on CIFAR10 with different settings
 - Learned classifier (default) **VS** fixed classifier as a simplex ETF
 - Feature dim d = 2048 (default) **VS** d = 10



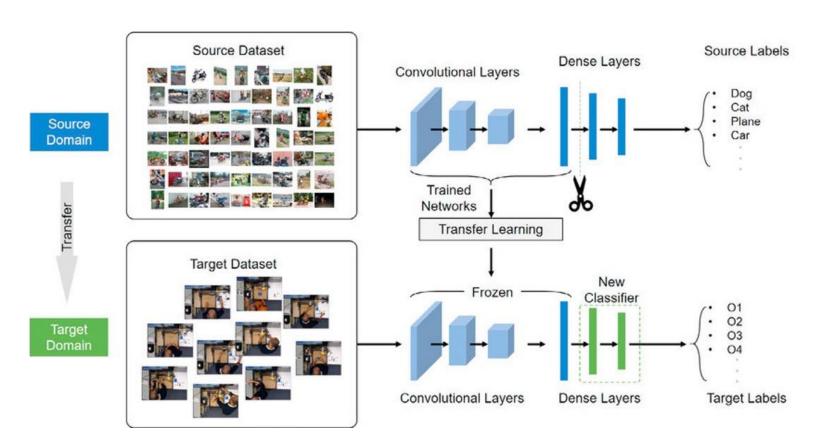
• Training with small dimensional features and fixed classifiers achieves onpar performance with large dimensional features and learned classifiers.

Related Work on NC

- A non-comprehensive overview of related work on NC
 - Theoretical analysis of NC
 - Unconstrained features model (UFM)
 - Deep unconstrained features model
 [Tirer & Bruna'22, Súkeník et al.'24]
 - Beyond UFM
 - global optimality [Jacot et al.'24]
 - gradient flow analysis [Min et al.'25]
 - Loss design
 - CE loss
 - MSE loss [Han et al.'22, Zhou et al.'22]
 - Supervised contrastive [Graf et al'21]
 - Multi-label learning [Li et al'24]
 - Large number of classes [Liu et al'23]
 - Progressive NC [Wang et al.'23]

- Applications for understanding & improving network performance
 - Efficient training
 - Transfer learning [Galanti et al.'22, Li et al.'24]
 - Imbalanced learning [Fang et al.'21]
 - Continual learning [Yang et al.'23]
 - Differential privacy [Wang et al'24]
 - Robustness [Su et al'23]
 - Generalization [Hui et al'22]
 - Feature learning in intermediate layers [He & Su'23, Rangamani et al.'23]
 - LLM [Wu'24]

Implications on Transfer Learning

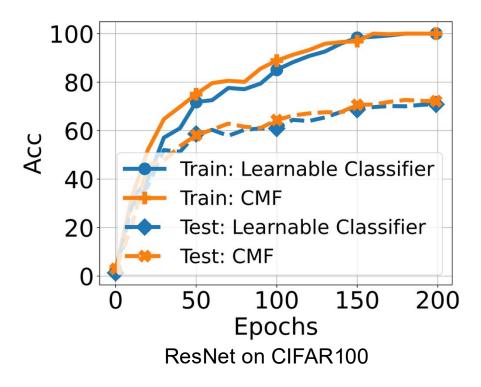


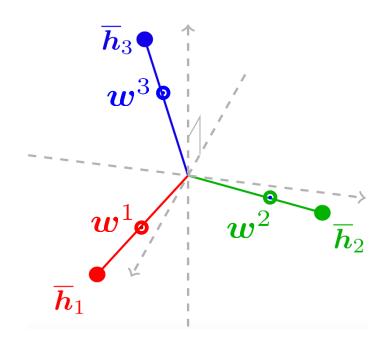
Why transfer learning is possible

- How to improve transfer learning performance
 - initialization for the new classifier
 - efficient fine-tuning

Experiment: Fixed Classifier as Class-mean Features

 We can also promote NC3 (self-duality) by fixing the classifier as the class-mean features (CMF) during training

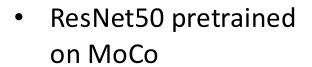




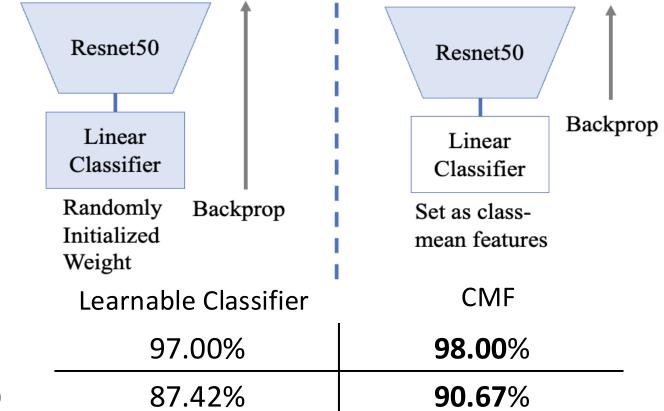
CMF achieves on-par performance with learned classifiers

Experiment: Fixed Classifier as Class-mean Features

CMF classifier improves Out-of-distribution (OOD) performance for fine-tuning



 Fine-tuned for CIFAR10



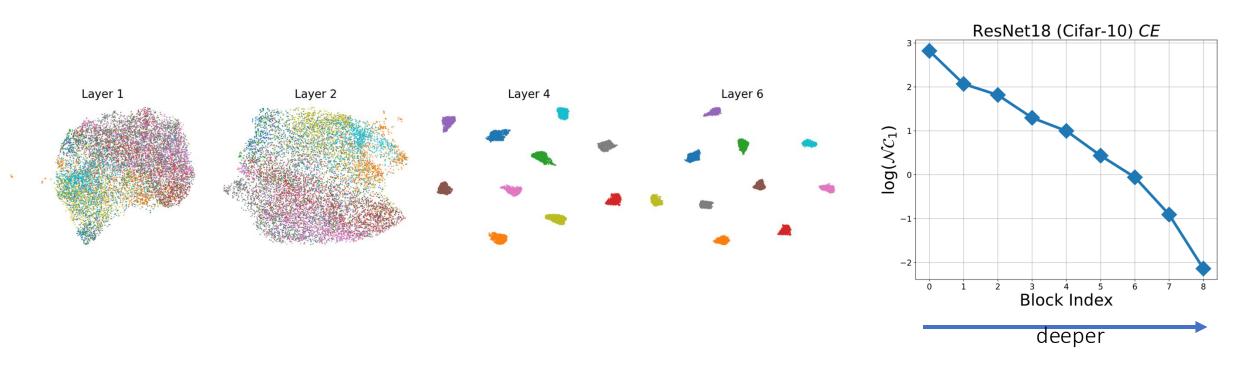
Test on CIFAR10 (ID)

Test on STL10 (OOD)

 Since self-duality (NC3) always hold, CMF classifier can better preserve properties of pretrained model during fine-tuning

Progressive separation from shallow to deep layers

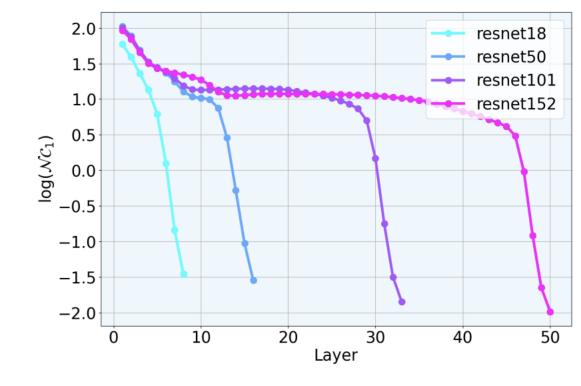
 From shallow to deep layers (effect of depths): progressive compression and separation

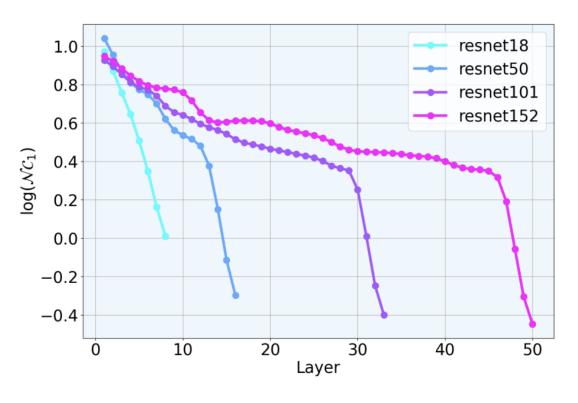


Effect of depth: creates progressive separation and collapse

Are all Layers Created Equal?

- Scaling up the model makes middle layers redundant
- Deeper layers excel at enhancing neural collapse (prone to memorization);
 other layers are good for transfer learning



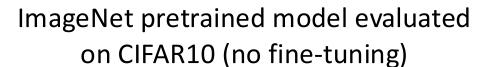


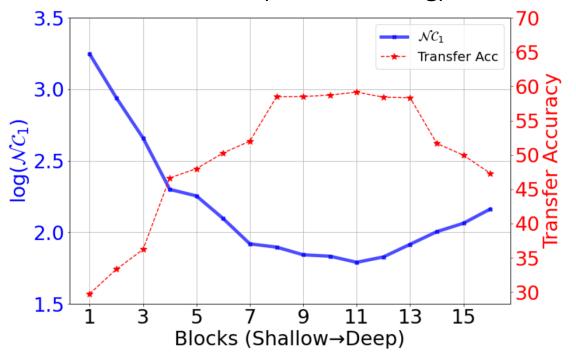
CIFAR10

ImageNet

Progressive Separation is Transferable

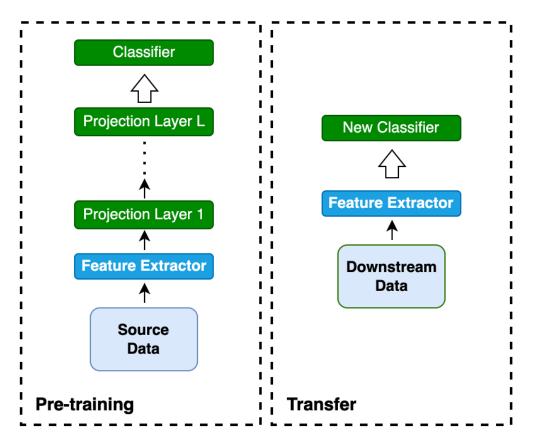
- Progressive separation is transferable among different tasks (common in medical domain)
 - ResNet-34 pre-trained on ImageNet
 - Evaluate on CIFAR10
 - Model is fixed without fine-tuning
 - Train a linear classifier on top of the features
- Layer-wise NC exhibits two phases on downstream tasks:
 - Phase 1: progressively decreasing (universal feature mapping)
 - Phase 2: progressively increasing (specific feature mapping) fine-tune this layer!

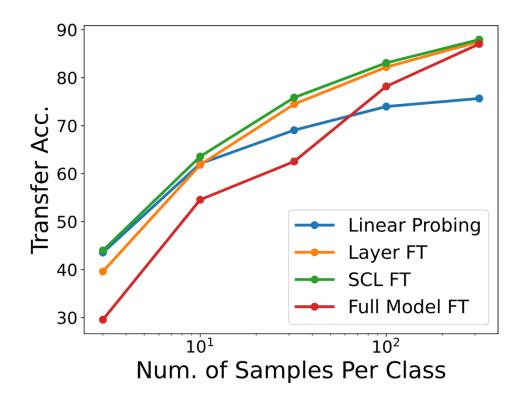




Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient



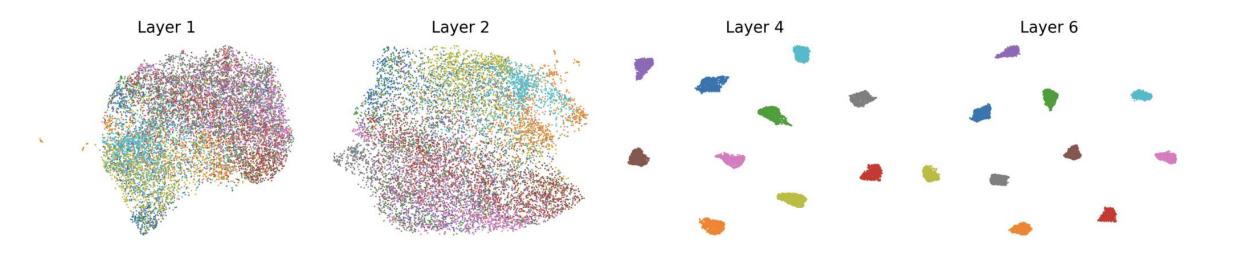


(a) Illustration of layer fine-tuning

(b) Fine-tuning results on CIFAR-10

The objective of learning:

Transform nonlinear and complex data to a linear, compact, and structured representation.

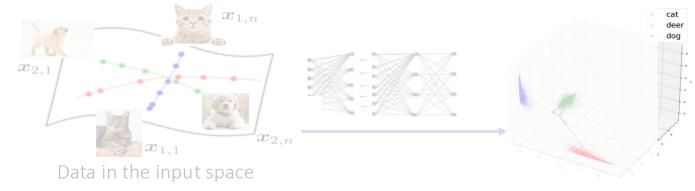


The effect of depth:

Progressively achieve this goal through layer-wise transformation

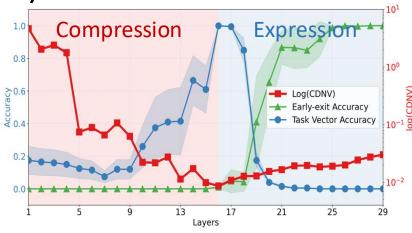
Outline

- Low-D representation in Deep Classifiers:
 - Neural Collapse (NC) Phenomena
 - Understanding NC from optimization
 - Progressive NC and transferability



- Low-D representation in Generative Models (LLM)
 - Compression-to-Expression Phenomena

Conclusion



Generative Models

Two popular and effective approaches to learn distribution $P(x_1, x_2, ..., x_n)$

- diffusion model (see Session III by Liyue and Qing, afternoon)
- autoregressive model: $P(x_1)P(x_2|x_1) \dots P(x_n|x_1, \dots, x_{n-1})$

1 G ChatGPT > x: prompt what is in-context learning

Natural language conversation

In-context learning is when a model (like GPT) learns to perform a task just by seeing examples of it inside the prompt, without changing its underlying weights. 📛 y: response

For example:

- You give the model a few examples of English-to-French translations ("dog → chien", "cat → chat") in the prompt.
- Then you ask it to translate "house → ?"
- The model "learns" from the pattern in the prompt and answers correctly ("maison"), without any retraining or updating.

It's like a model is reading a mini-lesson on-the-fly and figuring out what to do, based only on what it sees.

This is very different from traditional supervised learning, where you fine-tune a model with gradient descent.

Would you like a simple diagram too?

In-context Learning

LLM can "learn" to solve tasks without weight updates

$$A = 3$$
, $B = 1$, $C = 4$, $D = 1$, $E = 5$, $F =$

ChatGPT >

A = 3, B = 1, C = 4, D = 1, E = 5, F =

It looks like you're listing letters with corresponding numbers:

A = 3, B = 1, C = 4, D = 1, E = 5, and now you're asking for F = ?

From the numbers 3, 1, 4, 1, 5... this sequence looks familiar — it's the beginning of the digits of π (pi): 3.1415...

Following that logic, the next digit of π after 3.1415 is **9**.

Letter Prediction Tasks

```
Prompt: a \rightarrow b, b \rightarrow c, g \rightarrow h, m \rightarrow n

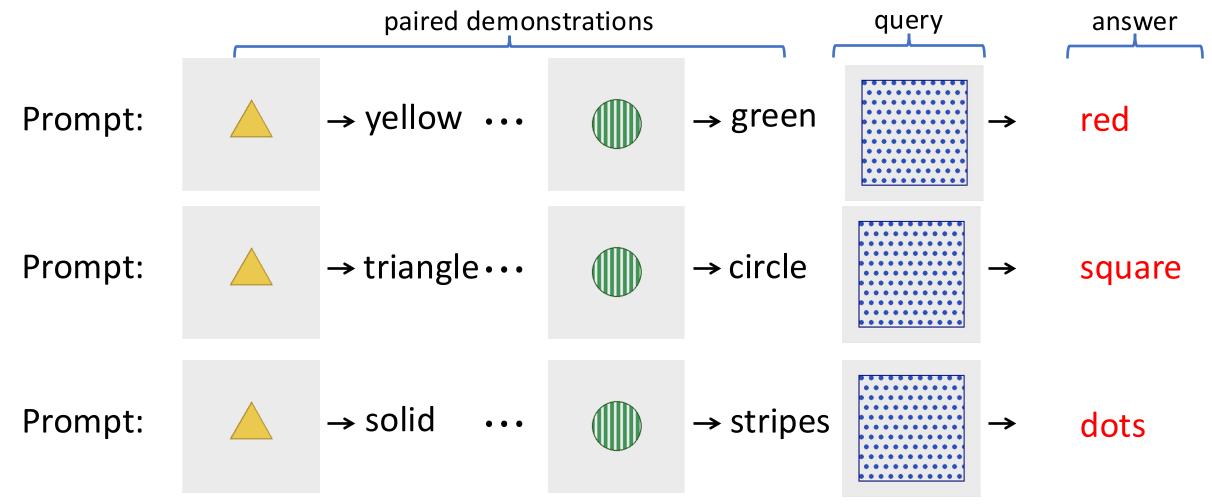
Prompt: a \rightarrow c, b \rightarrow d, g \rightarrow l, m \rightarrow o

Prompt: a \rightarrow a, b \rightarrow b, g \rightarrow g, m \rightarrow m

Prompt: a \rightarrow B, b \rightarrow C, g \rightarrow H, m \rightarrow N
```

- Step 1: identify the "rule/task/pattern" from the demonstrations
- Step 2: apply it to the query token "m"
- Does the LLM perform ICL in the same way?

In-context Learning



- Step 1: identify the "rule/task/pattern" from the demonstrations
- Step 2: apply it to the query token
- Does the MLLM perform ICL in the same way?

How Do LLM Perform ICL

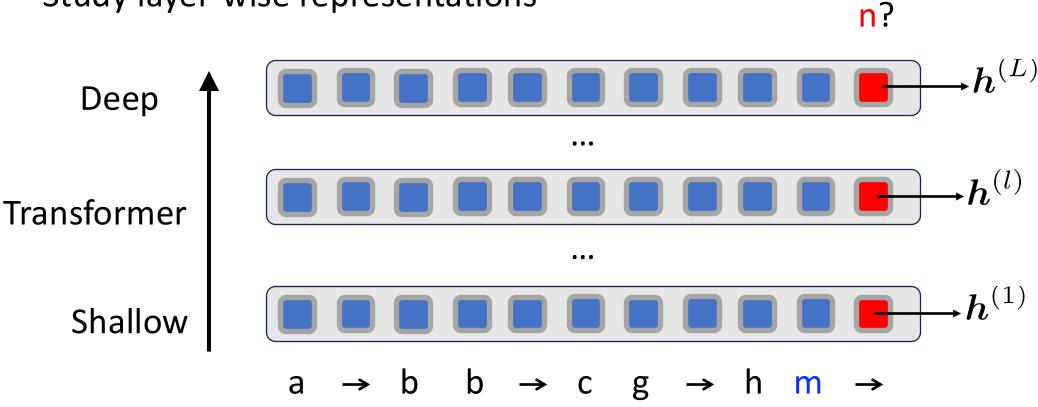
 The models are only pre-trained to predict next token. Why can they learn the input-output relationship in the prompt?

- Different approaches for understanding the ICL ability
 - Bayesian Perspective [Xie et al., 2021]
 - Meta-learning Perspective [Chen et al., 2021]
 - Meta-optimizer perspective [Oswald et al 2022, Ahn et al, 2023]
 - Mechanistic Interpretations (induction heads in copy problems [Olsson et al., 2022])
 - etc.
- But less emphasis on the internal representations within models

How do MLLMs extract and differentiate task information from shallow to deep layers during in-context learning?

Tracing Hidden Representation

Study layer-wise representations



• Denote the hidden representation of the last token at layer l as $m{h}^{(l)}$, knowns as task vector or in-context vector

Metric for Compression & Discrimination

• For each ICL task t (e.g. next letter prediction), generate N promots

Prompt 1:
$$a \to b, b \to c, c \to d, d \to h_{1,t}^{(l)}$$

Prompt 2: $d \to e, l \to m, s \to t, u \to h_{2,t}^{(l)}$

...

Prompt $N: m \to n, f \to g, i \to j, k \to l$

Define mean vector and variance

$$ar{m{h}}_t^{(\ell)} = rac{1}{N} \sum_{i=1}^N m{h}_{i,t}^{(\ell)} \qquad ext{var}_t^{(\ell)} = rac{1}{N} \sum_{i=1}^N \left\| m{h}_{i,t}^{(\ell)} - ar{m{h}}_t^{(\ell)}
ight\|_2^2$$

Metric for Compression & Discrimination

 TDNV (Task-Distance Normalized Variance) to capture the level of compression and separation

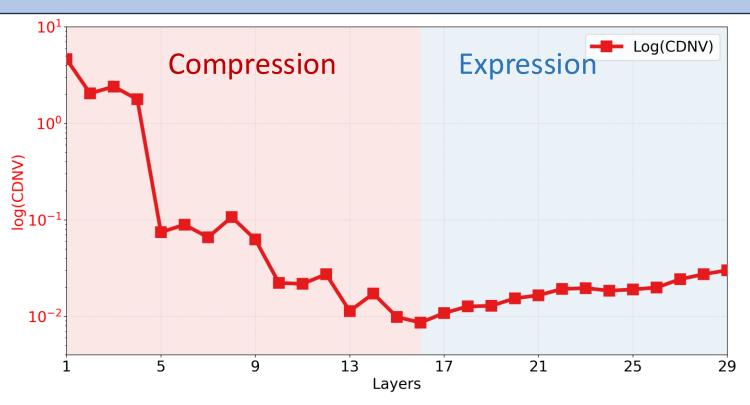
$$TDNV^{(\ell)} = \sum_{t \neq t'} \frac{\operatorname{var}_{t}^{(\ell)} + \operatorname{var}_{t'}^{(\ell)}}{\left\| \bar{\boldsymbol{h}}_{t}^{(\ell)} - \bar{\boldsymbol{h}}_{t'}^{(\ell)} \right\|_{2}^{2}}$$

- Within-task Variance: how well the representation from the same task are compressed towards its own task mean
- Between-task Distance: how well the task means of different task are discriminated from each other

From Compression to Expression/Expansion

Progressive compression and then expression from shallow layers to deep layers

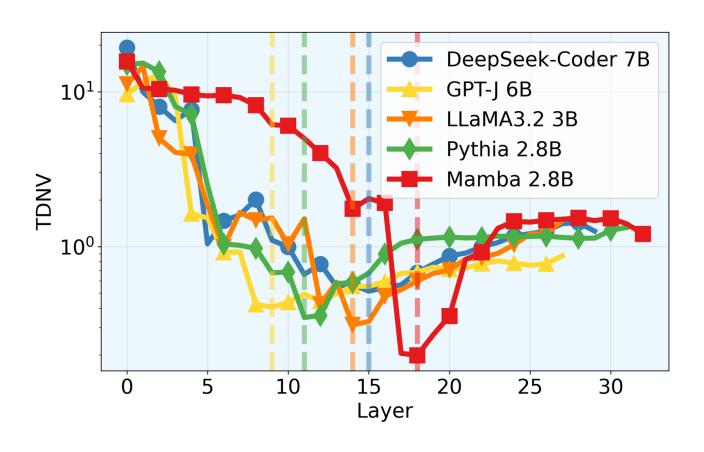
Task Groups	Task	Example
Letter-to-Letter	Copy Letter	$a \rightarrow a$
	Next Letter	$a \rightarrow b$
	To Uppercase	$a \rightarrow A$
	Prev Letter	$b \to a$
	Next 2 Letter	$a \rightarrow c$



- Compression phase: the model produces compact & discriminative representation that captures the "rule/task/pattern" from the input data
- Expression phase: apply the compact representation to the input query

Prevalence of the Phenomenon

Universality across model architectures (Transformer & State-Space Model)

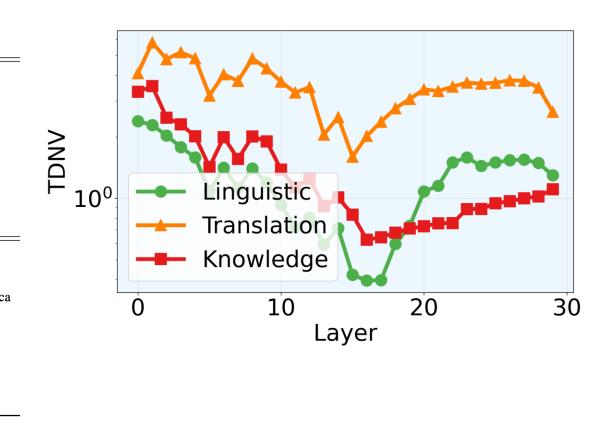


Prevalence of the Phenomenon

Universality across task domains

Symbolic ICL (Beyond Algorithmic)

Translation	$French ightarrow English \ Spanish ightarrow English \ English ightarrow French \ English ightarrow Italian \ English ightarrow Spanish$	bonjour → hello gracias → thank you goodbye → au revoir music → musica thank you → gracias
Linguistic		$egin{aligned} & \operatorname{hot} & \to \operatorname{cold} \\ & \operatorname{cats} & \to \operatorname{cat} \end{aligned}$ $& \operatorname{run} & \to \operatorname{running} \end{aligned}$ $& \operatorname{walk} & \to \operatorname{had} \operatorname{walked} \end{aligned}$ $& \operatorname{jump} & \to \operatorname{jumped} \end{aligned}$ $& \operatorname{dog} & \to \operatorname{dogs} $
Knowledge	Country o Capital Football Player o Position Location o Continent Location o Country Location o Language Location o Religion	$France ightarrow Paris \ Lionel Messi ightarrow Forward \ Brazil ightarrow South America \ Kyoto ightarrow Japan \ Egypt ightarrow Arabic \ India ightarrow Hinduism$



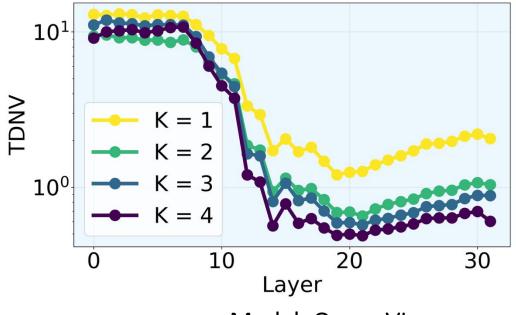
Prevalence of the Phenomenon

Universality across task domains

Multimodality ICL (Beyond Language)

image	color	shape	size	texture
	yellow	triangle	small	solid
	blue	square	large	dots
*	red	star	large	solid
	black	pentagon	large	checker
	green	circle	small	stripes

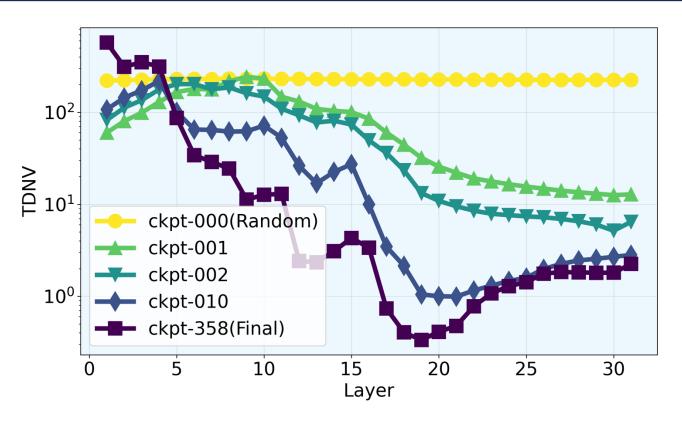
Attribute	Labels
Color	red, green, blue, yellow, black
Shape	circle, square, triangle, pentagon, star
Size	small, medium, large
Texture	solid, stripes, dots, checker



Model: Qwen-VL

Compression-Expression Emerges During Training

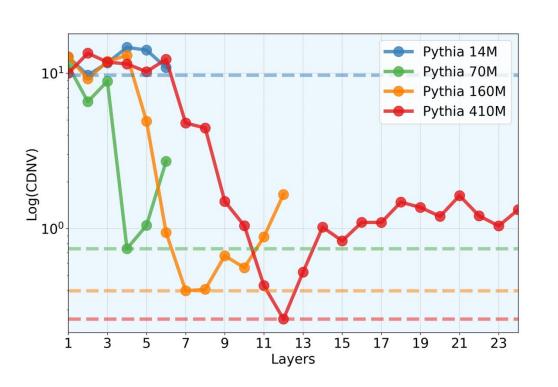
Emergence during training

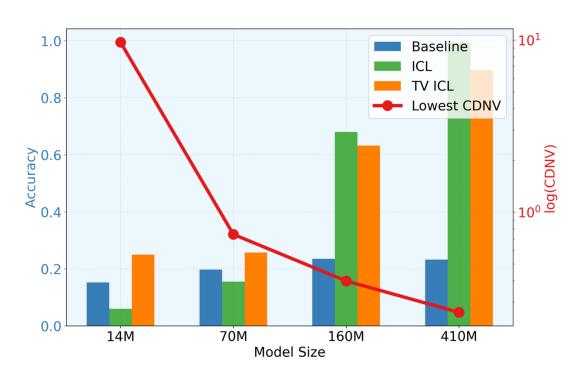


- Before training: flat TDNV values across all layers
- During training: distinct U-shape curve emerges and deepens

Scaling Model Promotes Compression

Scaling up model size leads to more compressed representations

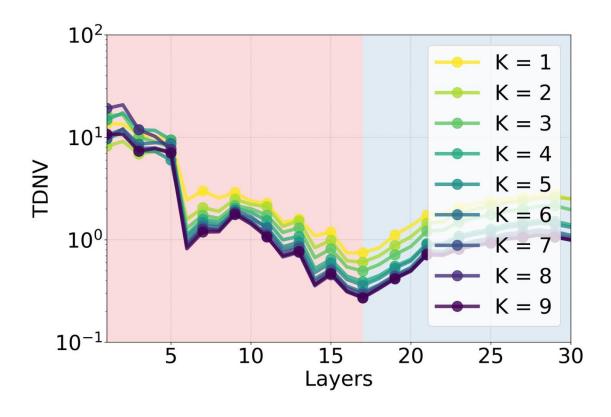




Compressed level correlates with the ICL performance.

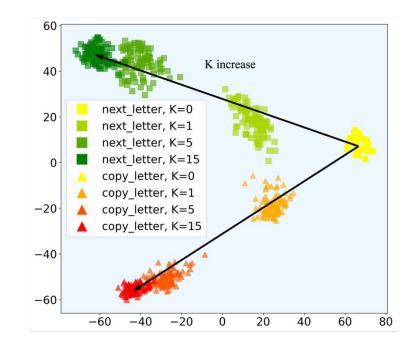
Number of Demonstrations Promotes Compression

Increasing in-context lengths (num of demonstrations K) leads to more compressed representations.



Bias-variance Decomposition

- Different tasks induce task vectors in distinct directions, yet each task follows a consistent direction
- The variance within each task decreases

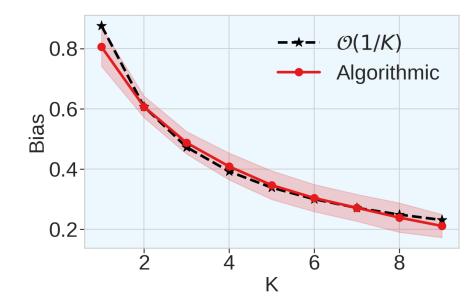


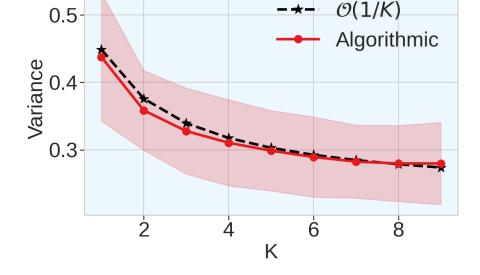
$$h_{i,t}(K) = \underbrace{\mu_t(\infty)}_{\text{ideal representation}} + \underbrace{\mu_t(K) - \mu_t(\infty)}_{\text{bias}} + \underbrace{h_{i,t}(K) - \mu_t(K)}_{\text{variance}}$$

$$\mu_t(K) = \mathbb{E}_i[\boldsymbol{h}_{i,t}(K)]$$

$$\mu_t(\infty) = \lim_{K \to \infty} \mathbb{E}_i[\boldsymbol{h}_{i,t}(K)]$$

Decrease of Bias and Variance





Decrease of Bias:

$$\frac{\|\boldsymbol{\mu}_t(K) - \boldsymbol{\mu}_t(\infty)\|_2}{\|\boldsymbol{\mu}_t(0) - \boldsymbol{\mu}_t(\infty)\|_2} \propto \mathcal{O}\left(\frac{1}{K}\right)$$

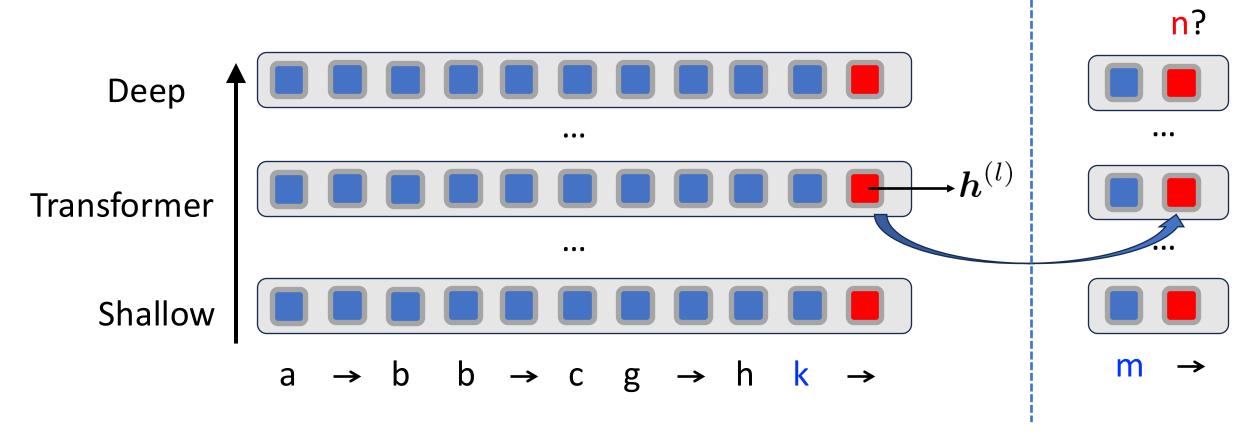
Decrease of Variance:

$$\left\| \mathbb{E} \left[\left(\mathbf{h}_{t,i}(K) - \boldsymbol{\mu}_t(K) \right)^2 \right] \right\|_2 \propto \mathcal{O}\left(\frac{1}{K} \right)$$

• A formal analysis for simplified models (linear attention)

Task Vector Accuracy

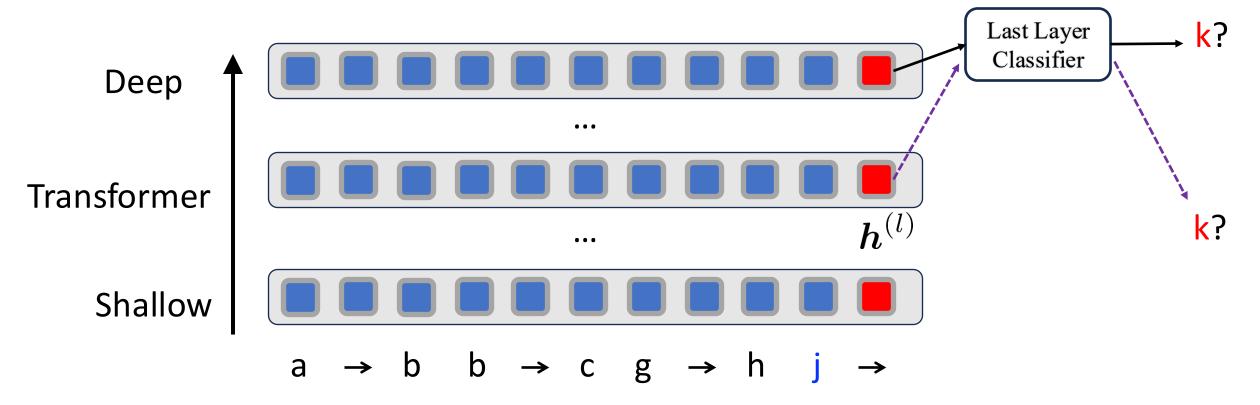
• Query + task-vector $oldsymbol{h}^{(l)}$ is enough to perform ICL



How much the hidden representation captures the task information

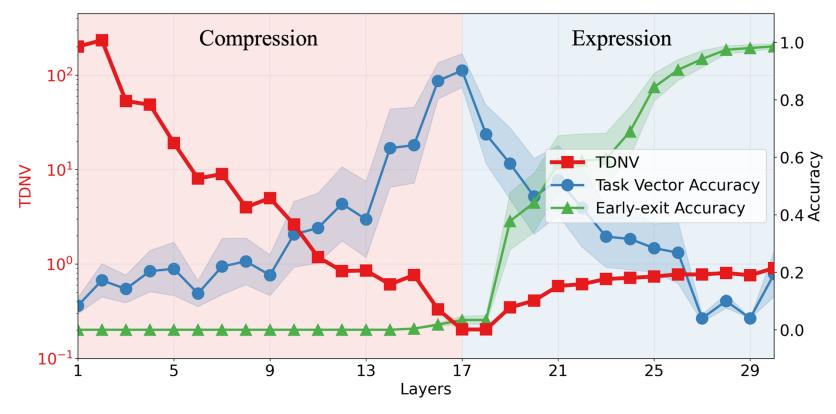
Early Exit Accuracy

Make prediction based on intermediate layer hidden states instead of last layer



How much the hidden representation captures the query information

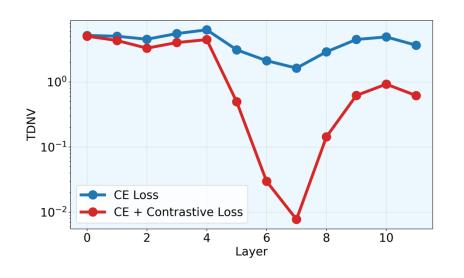
Layerwise Compression and Expression

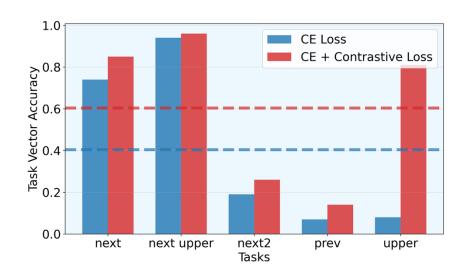


- The most compact representation (smallest TDNV) achieves best Task Vector Accuracy (Query + task-vector $h^{(l)}$)
- Early-exit Accuracy starts increasing after the most compact layer

Promoting Compression Improves Performance

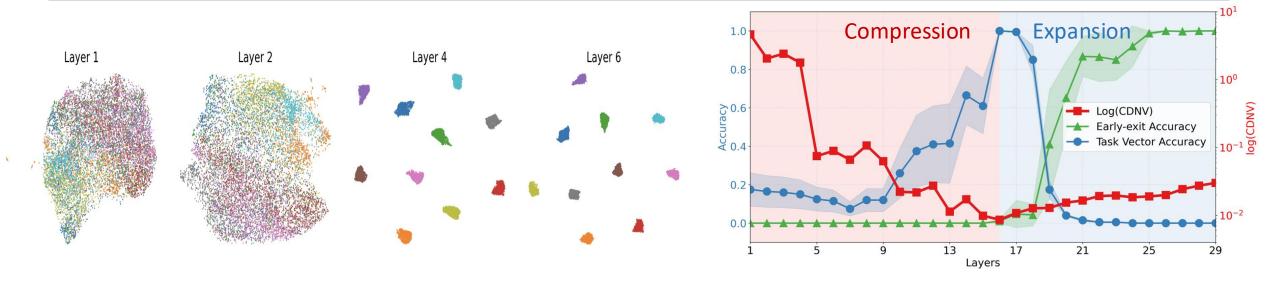
Task-vector contrastive fine-tuning improves task-vector accuracy





- Method: during fine-tuning on ICL tasks, add contrastive loss on intermediate layer features to encourage compression
- Results: more compressed representations yield better performance; task-vector accuracy improves by 20%

Linear, compact, and structured representation emerges in deep classifiers and (multimodal) large language models



The objective of learning: Transform nonlinear and complex data to a linear, compact, and structured representation.

The effect of depth: Progressively achieve this goal through layerwise transformation

This Tutorial: The Outline

- Session I: Introduction of Basic Low-dimensional Models
- Session II: Understanding Low-Dimensional Structures in Representation Learning
 - Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning:
 Algebraic and Geometric Perspectives
 - Lec 2.2: Emergency of Low-dimensional Representations in Deep Models
- Session III: Understanding Low-Dimensional Structures in Diffusion Generative Models (starts from 1PM)
 - Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models
 - Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion Models in Scientific Applications
- Session IV: Designing Deep Networks for Pursuing Low-Dimensional Structures
 - Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
 - Lec 4.2: White-Box Transformers via Sparse Rate Reduction
- Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic