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This Tutorial: The Outline

e Session I: Introduction of Basic Low-dimensional Models

* Session ll: Understanding Low-Dimensional Structures in Representation Learning

- Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning:
Algebraic and Geometric Perspectives

- Lec 2.2: Emergency of Low-dimensional Representations in Deep Models

e Session lll: Understanding Low-Dimensional Structures in Diffusion Generative
Models

- Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models

— Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion
Models in Scientific Applications

e Session IV: Designing Deep Networks for Pursuing Low-Dimensional
Structures

- Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
- Lec 4.2: White-Box Transformers via Sparse Rate Reduction

e Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic



Classical Low-dimension Model: GPCA

* Generalized PCA for mixture of subspaces [Vvidal, Ma, Sastry 2005]
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Modern (Deep) Representation Learning

Understand and interact with the physical world = nonlinear data
Coping with nonlinearity demands (deeper) representation




Modern (Deep) Representation Learning
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 Deep learning builds multiple level of abstractions

- Learn representation from data by back-propagation
- Reduce domain knowledge and feature engineering
— Progressively “linearize” the nonlinear structure




The objective of learning:
Transform nonlinear and complex data to
a linear, compact, and structured representation. y

hs
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| Neural collapse

\L/“'ﬁ‘;i representation (by

h: %" standard CE training)

Diverse & discriminative
representation (by MCR?
training, contrastive

. . . learnin
Empirically observe across many architectures and dataset 8)

Theoretically justify for a simple model

Lead to principled ways for designing architectures to pursue Low-D
structures (see Session |V, afternoon)
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The effect of depth:
Progressively transform a nonlinear and complex distribution to a
linear, compact and structured one

Layer 1 Layer 2 Layer 4 Layer 6
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Empirically observe across many architectures and dataset

Theoretically justify for simplified models or geodesic curve connecting
the two probability distributions

Lead to principled ways for designing architectures to pursue Low-D
structures



Outline

 Low-D representation in Deep Classifiers:
Repnsd T n
— Neural Collapse (NC) Phenomena e — B

— Understanding NC from optimization .,,; - - P : |
— Progressive NC and transferability L © e \ \ ¥

Data in the input space

 Low-D representation in Generative Models (MLLM)
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Multi-Class Image Classification Problems

e labels:k=1,....,K
- K =10 classes (MNIST, CIFAR10, etc.)
- K = 1000 classes (ImageNet)

& Cat Dog Truck
L2 1 O 1 O
T S y . . L) .
Neural network . . .
Ny w2,n O_ O— 1_
A ‘::'Blal K
Data in the input space One-hot labeling vectors in [R

* Assume balanced dataset where each class has n training samples



Deep Neural Network Classifiers

Input Feature/representation
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Representation: Neural Collapse

* Characterize the geometry of representations
for data separation

 [Papyan et al. 20] reveals common outcome
of learned features (output of last-hidden
layer) and classifiers across a variety of
architectures and dataset

e Precise mathematical structure within the
features and classifier

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, & X. Y. Han, and Dawid L. Donoho

+ See all authors and affiliations

PNAS October b, 2020 117 (40) 24652-24663; hirst publshed September 21, 2020

Contnibuted by Dawad L. Donoho, August 18, 2020 (sent far review July 22, 2020, reviewed by Hedmut Boelsckei and

Sléphans Mallath




Neural Collapse: Symmetry and Structures

e Within-Class Variability Collapse (NC1): features of each class collapse to
class-mean with zero variability (low-dimensional features):

k-th class, i-th sample : by ; — h:




Neural Collapse: Symmetry and Structures

e Convergence to Simplex ETF (NC2): the class means are linearly separable,
have same length, and maximal angle between each other:

(., By {1, k=K
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Neural Collapse: Symmetry and Structures

* Convergence to Self-Duality (NC3): the last-layer classifiers are perfectly
matched with the class-means of features:

Wi . hk h3
4 JE— . w
lwell - [[h 3

where w;, represents the k-th row of W w/1/ \wf\t




Why Neural Collapse

NC is preferred among every successful exercise in feature engineering
- Information Theory: Simplex ETF is the optimal Shannon code
— Classification: Simple ETF features = Simplex ETF max-margin classifier

/

(&

Question: Given the prevalence of Neural Collapse across datasets and
network architectures, why would such a phenomenon happen in training
overparameterized networks?
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Dealing with a Highly Nonconvex Problem

[ |
:
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k=1 =1
The problem is highly nonconvex [Li et al’18] FA"%’
* Nonlinear interactions across layers

* Nonlinear activation functions



Simplification: Unconstrained Features
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Heavy Parameterization in CV Models

ViT-G/14

90 BiT-L (ResNet) ./.—'.
| e o ST
I M A G E N E ResNet-152,(60M)

80
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70 Five Base + Five HiRes

AlexNet

* 1000 object classes

TOP 1 ACCURACY
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* Images: .
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Alex Net VGG- 19 esNg? 0,1 32x48BiT- M (ResNet) 3
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-5G
2014 2016 2018 2020 2022

Other models -~ Models with highest Number of params

ImageNet Classification Leaderboard from paperswithcode.com

Performance & Model size keep increasing

# parameters >> # training samples


https://paperswithcode.com/

Simplification: Unconstrained Features
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 Validity: Modern networks are highly overparameterized, that can approximate any point in
the feature space
- also called Layer-peeled model [Fang et al’21] and has been widely used recently for studying NC

J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022

W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020

C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021

W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021

J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.

F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.

T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.

A Rangamani M Xu A Banburski O Liao T Poggio Dvnamics and Neural Collanse in Deep Classifiers trained with the Sauare loss 2021



Experiment: NC Occurs on Random Labels/Inputs

* CIFAR-10 Dataset with random labels, MLP with varying network width

10 width = 8 width = 8 9 width = 8
T 8 width = 16 1.0 width = 16 £ 80 width = 16
S width = 32 08 width = 32 L 70 width = 32
n 6 width = 64 e width = 64 0 60 width = 64
D 4 width = 128 § 0.6 width = 128 i 50 width = 128
= width = 256 width = 256 240 width = 256
5 2 width = 512 0.4 width = 512 =30 width = 512
Z 0 width = 1024 0.2 width = 1024 © 20 width = 1024
5 width = 2048 width = 2048 | =10 width = 2048
0 100 200 300 400 500 2% 100 200 300 400 500 % 100 200 300 400 500
Epoch Epoch Epoch
Within-Class Variability (NC1) Self-Duality Collapse (NC3) Training Error

e Validity of unconstrained features model: Learned last-layer features
and classifiers seems to be independent of input!

* The network memorizes training data in a very special way: NC

* We observe similar results on random inputs (random pixels)



Geometric Analysis of Global Landscape

| Theorem (mformal) Let feature d|m d > #class K-l ::
 (Global Optimality) Any global solution (W*, H*, b*) must satisfy NC: b* = 0 and

he.=h @’E_’:’> _ b wetd éz
e T TSI S 7 e T T )

. . . . 1
* d = K-1is required to make K class-mean features equal angle with cosine angle —

(the largest possible) between each pair.
e The features have zero global mean

 |f H are constrained to be nonnegative (output of ReLu unit)
- Bias term compensates for the global mean of the features g _ ~Whg



Geometric Analysis of Global Landscape

 [Luetal’22] studies the following one-example-per class model

o1
m&nﬁéﬁcg;(hk,yk), s.t. ||helle =1

* [Eetal’21, Fang et aI.’21 Gral et al’21] studies constrained formulation

$1%K—n ;ZL:CE Whi i, yk), s-t. |[W]E < Cw, ||H||F < Ch

* These work show that any global solution has NC, but
— What about local minima?
— The constraint formulations are not aligned with practice

J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, ACHA, 2022

W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2021
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020

C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021

W. Ji, Y. Lu, Y. Zhang, Z. Deng, W. Su, An unconstrained layer-peeled perspective on neural collapse, 2021

J. Zarka, F. Guth, S. Mallat, Separation and Concentration in Deep Networks, ICLR, 2021.

F. Graf, C. Hofer, M. Niethammer, R. Kwitt, Dissecting Supervised Contrastive Learning, ICML, 2021.

T. Ergen, M. Pilanci, Revealing the structure of deep neural networks via convex duality, ICML, 2021.

A Ranegamani M Xu. A Banburski Q Liao. T Poggio Dvnamics and Neural Collapse in Deep Classifiers trained with the Sqguare Loss 202 1.



=

Geometric Analysis of Global Landscape

klzl

’{:\Theorem (mformal) Let feature d|m d > #class K—1

'(Benign Global Landscape) The function has no spurious local minimizer and is

a strict saddle functlon W|th negatlve curvature for non- global critical pomts
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strict saddle

' - v )
v all local minima obey NC  negative curvature
“flat” saddle

v N
global minima

General nonconvex problems Our training problem



NC always Happens

Theorem (mformal) (Global Optlmallty) Any global solution must satlsfy NC

(Benlgn Global Landscape) The loss has no spurious local minimizer and is a
str|ct saddle functlon W|th negatlve curvature for non-global crltlcal pomt

= === - — I - — _====== _—— — — = e e e === =l _ == T S ==—== ==== =_======

Message: deep networks always learn Neural Collapse features and classifiers



Experiment: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms

NCq

The smaller the quantities, the severer NC

6
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NC across different training algorithms
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Self-Duality Collapse (NC3)



NC always Happens

min i S‘ S‘ Loe(Why ;i +b,yx)

[---------

'Theorem (mformal) (Global Optlmallty) Any global solution must satlsfy NC

(Benign Global Landscape) The loss has no spurious local minimizer and is a
:? str|ct saddle functlon W|th negatlve curvature for non- global crltlcal pomt

=== == _—— e — = _E===========3 = =

Message: deep networks always learn Neural Collapse features and classifiers

 Holds for many other losses, such as focal, label smoothing, MSE
— all losses lead to largely identical features on training data and performance on testing

* Analysis can be extended to understand other training paradigms, such as
MCR?, self-supervised, etc.

Zhou, You, Li, Liu, Liu, Qu, Zhu, Are All Losses Created Equal: A Neural Collapse Perspective, NeurlPS 2022.
Peng Wang, Huikang Liu, Druv Pai, Yaodong Yu, Zhihui Zhu, Qing Qu, and Yi Ma, “A Global Geometric Analysis of Maximal Coding Rate Reduction," ICML, 2024.



All Loses Lead to Identical Features?

* We study them under the unconstrained feature model:

Hm%lenZZc (Whii +b,yx) + A|(H, W, b) |1

k=1 1=1

Theorem (mformal) With feature dlmen5|on feature d|m d > #class K—1 the
}}Iosses (CE FL LS IVISE etc) Iead to the same NC features and cIassrflers

,,,,,,,,,,,,,,
\\\\\\\\\\\\\\\\\\\\\\\

;‘flmpllcatlon for practlcal network: If network is Iarge enough and trained
longer enough

- All losses lead to largely identical features on training data (NC)

Zhou,..., Zhu, On the Optimization Landscape of Neural Collapse Under MSE Loss: Global Optimality with Unconstrained Features, ICML 2022.
Zhou, You, Li, Liu, Liu, Qu, Zhu, Are All Losses Created Equal: A Neural Collapse Perspective, NeurlIPS 2022.

= o

- AII Iosses Iead to Iargely |dent|cal performance on test data



Experiments: Different Loses on CIFAR10

ResNet50, CIFAR-10 with different network width and training epoches

test Accys

test Accy

test ACCmse

800 EEEHER IR 1010} 94.070 800

400

" 93.763 94.410 0 400 EEEXERELY: "
° ° e
() @) |@)
8 g 8
¥ipJe]s] 03.163 93.833 94.167 mplale] 02.963 93.887 94.040 94.233 EmRYls] 93.733 94.403 94.690
pNele} ©2.090 92.630 93.240 93.293 gNeJe} ©1.480 92.250 92.827 93.093 N0} ©02.463 93.230 93.683 194.360
025 05 1 2 025 05 1 2 025 05 1 2
Width Width Width
Focal loss Label smoothing

Mean-squared Error

Cross-entropy

 Left bottom corner has larger difference than right top corner

* If network is large enough and trained longer enough:
- All losses lead to largely identical features on training data (NC)

- All losses lead to largely identical performance on test data



Exploit NC for Practical Network Training

Observation: NCis prevalent, and classifier always
converges to a Simplex ETF

* Implication 1: No need to learn the classifier
- Just fix it as a Simplex ETF

- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!

* Implication 2: No need of large feature dimension d
- Just use feature dim d = #class K (e.g., d=10 for CIFAR10)

- Further saves 21% and 4.5% parameters for ResNet18 and
ResNet50!



Experiment: Fixed Classifier with d = K

 ResNet50 on CIFAR10 with different settings
- Learned classifier (default) VS fixed classifier as a simplex ETF
— Feature dim d = 2048 (default) VS d = 10

1.2 100 100
learned classifier, d=2048 > 90
1.0 fixed classifier, d=2048 o 9
- « 80 © 80
0.8 learned classifier, d=10 5 =
. fixed classifier, d=10 S § 70
§ 0.6 g 60 © 60
c learned classifier, d=2048 g 50 learned classifier, d=2048
0.4 c fixed classifier, d=2048 S fixed classifier, d=2048
S 40 ot O 40 o
0.2 e learned classifier, d=10 (] learned classifier, d=10
= fixed classifier, d=10 F 30 fixed classifier, d=10
0.9 50 100 150 200 209 50 100 150 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy

* Training with small dimensional features and fixed classifiers achieves on-
par performance with large dimensional features and learned classifiers.



Related Work on NC

* A non-comprehensive overview of related work on NC

 Theoretical analysis of NC * Applications for understanding &
- Unconstrained features model (UFM) Improving network performance
— Deep unconstrained features model - Efficient training
[Tirer & Bruna’22, Stkenik et al.’24] — Transfer learning [Galanti et al.’22, Li et
— Beyond UFM al."24]
= global optimality [Jacot et al.’24] — Imbalanced learning [Fang et al"21]
= gradient flow analysis [Min et al.’25] — Continual learning [Yang et al.’23]
— Loss design - Differential privacy [Wang et al’24]
" CE loss — Robustness [Su et al’23]

= MSE loss [Han et al.’22, Zhou et al.22]
= Supervised contrastive [Graf et al’21]

— Generalization [Hui et al’22]

: : — Feature learning in intermediate layers [He
— Multi-label learning [Li et al'24] & Su'23, Rangamani et al/23]

— Large number of classes [Liu et al’23] — LLM [Wu’24]
— Progressive NC [Wang et al. 23]



Implications on Transfer Learning

Source
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learning is possible
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transfer learning
performance

— initialization for the
new classifier

- efficient fine-tuning



Experiment: Fixed Classifier as Class-mean Features

 We can also promote NC3 (self-duality) by fixing the classifier as the
class-mean features (CMF) during training

1001
80
b3
40 _
- Train: CMF
20{ =€~ Test: Learnable Classifier
Test: CMF
(054 | | | |
0 50 100 150 200
Epochs

ResNet on CIFAR100

e CMF achieves on-par performance with learned classifiers

Jiang, Zhou, Wang, Qu, Mixon, You, Zhu, Generalized Neural Collapse for a Large Number of Classes, ICML 2024



Experiment: Fixed Classifier as Class-mean Features

 CMF classifier improves Out-of-distribution (OOD) performance for fine-tuning

7 4 .
« ResNet50 pretrained | Resnet>0 l Resnet>0
on MoCo — : |
* Fine-tuned for Linear | Linear Backprop
CIFAR10 Classifier l Classifier
Randomly  Backprop : Set as class-
Initialized I mean features
Weight I
Learnable Classifier CMF
Test on CIFAR10 (ID) 97.00% 98.00%
Test on STL10 (OOD) 87.42% 90.67%

* Since self-duality (NC3) always hold, CMF classifier can better preserve
properties of pretrained model during fine-tuning

Jiang, Zhou, Wang, Qu, Mixon, You, Zhu, Generalized Neural Collapse for a Large Number of Classes, ICML 2024
Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution, ICLR 2022.



Progressive separation from shallow to deep layers

 From shallow to deep layers (effect of depths): progressive compression and

separann
; ResNetl8 (Cifar-10) CE
Layer 1 Layer 2 Layer 4 Layer 6 2
] <
y r 4 o
iy O
<\ g a V 2
o) B
& o
& a - o

0 1 2 4 6 7 8

3 5
Block Index

deeper >

* Effect of depth: creates progressive separation and collapse

He, Hangfeng, and Weijie J. Su. “A law of data separation in deep learning,” PNAS 2023.
Wang, Li, Yaras, Hu, Zhu, , Balzano, Qu, Understanding Deep Representation Learning via Layerwise Feature Compression and Discrimination, JMLR 2025
Jinxin Zhou, Jiachen Jiang, Zhihui Zhu, Are all layers created equal: A neural collapse perspective, CPAL 2025.



Are all Layers Created Equal?

* Scaling up the model makes middle layers redundant

 Deeper layers excel at enhancing neural collapse (prone to memorization);

other layers are good for transfer learning

2.0 resnet18 1.0
1.5 resnet50 0.8
—eo— resnetl0l '
1.0 —o— resnetl52 0.6
—~ 0.5 —_
) S 0.4
2 00 2
2 g 02
- —-0.5
0.0
-1.0
-0.2
-1.5
-0.4
-2.0
0 10 20 30 40 50
Layer
CIFAR10

Jinxin Zhou, Jiachen Jiang, Zhihui Zhu, Are all layers created equal: A neural collapse perspective, CPAL 2025.

resnetls8

resnet50
—e— resnetlOl
—eo— resnetl52

10 20 30 40 50
Layer

ImageNet




Progressive Separation is Transferable

* Progressive separation is transferable

among different tasks (common in ImageNet pretrained model evaluated

on CIFAR10 (no fine-tuning)

medical domain) - .
— ResNet-34 pre-trained on ImageNet o manster acc |65
— Evaluate on CIFAR10 3.0 60 3
- Model is fixed without fine-tuning § 223
: . . 50 <
— Train a linear classifier on top of the features éz > 4o D
* Layer-wise NC exhibits two phases on 50 40§
downstream tasks: | 35
: : : 30
- Phase 1: progressively decreasing (universal 15535 35 ¢ 11 13 15
feature mapping) Blocks (Shallow—Deep)

— Phase 2: progressively increasing (specific
feature mapping) fine-tune this layer!

Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, Qing Qu, Principled and Efficient Transfer Learning of Deep Models via Neural Collapse, TMLR 2024.



Efficient Layer Fine-tuning

{ Fine-tuning one key intermediate layer is sufficient

Classifier

Projection Layer L New Classifier

[N Gisesifisr
i
A

Feature Extractor

1
1
1
1
1
1
1
1
1
1
1
1
1 Projection Layer 1
1
1
1
1
1
1
1
1
1
1
1

Feature Extractor Downstream
Data
Source
Data
, Pre-training Transfer

(a) lllustration of layer fine-tuning
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o
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N
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w
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Linear Probing
Layer FT

SCL FT

Full Model FT

it

101 102
Num. of Samples Per Class

(b) Fine-tuning results on CIFAR-10
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The objective of learning:
Transform nonlinear and complex data to
9 a linear, compact, and structured representation. y
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The effect of depth:
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Outline

Low-D representation in Generative Models (LLM)

— Compression-to-Expression Phenomena

Conclusion

1.0
08
>0.6
©
0
0.4

0.2

0.01

Compression

== Log(CDNV)
—A&— Early-exit Accurac y
—@— Task Vector Accuracy

—
o

Layer:

17

21 25

29

101

E)}p:fj;kﬁ’“

log(CDNV)

1052



Generative Models

Two popular and effective approaches to learn distribution P(xq4, x5, ..., X5,)
e diffusion model (see Session Il by Liyue and Qing, afternoon)
* autoregressive model: P(x;)P(x,|xq1) ... P(x|xq, o) X0p—1)

ChatGPT > T, (o

x: p ro m pt |:> what is in-context learning

In-context learning is when a model (like GPT) learns to perform a task just by seeing examples of it inside the prompt, without changing its
 Natural language

| {3 y: response
conversation

P ( | ) - You give the model a few examples of English-to-French translations ("dog = chien”, “cat - chat") in the prompt.

underlying weights.

For example:

« Then you ask it to translate "house = ?"

« The model “learns” from the pattern in the prompt and answers correctly (“maison”), without any retraining or updating.

It's like a model is reading a mini-lesson on-the-fly and figuring out what to do, based only on what it sees.

This is very different from traditional supervised learning, where you fine-tune a model with gradient descent.

Would you like a simple diagram too? ¥&



In-context Learning

* LLM can “learn” to solve tasks without weight updates

ChatGPT > T, (o

A=3B=1,C=4D=1E=5,F=

ChatGPT > &
A=3,B=1,C=4,D=1E=5F=

It looks like you're listing letters with corresponding numbers:
A=3,B=1C=4,D=1E=5, and now you're asking for F = ?

From the numbers 3, 1, 4, 1, 5... this sequence looks familiar — it's the beginning of the digits of 1 (pi): 3.1415...

Following that logic, the next digit of m after 3.1415 is 9.



Letter Prediction Tasks

paired dlemonstrations query answer
Prompt:’a - b, b - ¢ g - F\,lm S no
Prompt: a —- ¢, b - d, g - I, m - 0
Prompt:a —» a, b - b, g - g m — m
Prompt:a —-» B, b - C, g - H m - N

* Step 1: identify the “rule/task/pattern” from the demonstrations
e Step 2: apply it to the query token “m”
* Does the LLM perform ICL in the same way?



In-context Learning

paired demonstrations answer
| . \ | 1 | . 1
Prompt: /. —>vyellow ... (I]]"D — green — red
Prompt: /. —>triangle--- (]]]m} —>circle fmiid > square
Prompt: /. —solid ... ([f) —stripes [N - dots

* Step 1: identify the “rule/task/pattern” from the demonstrations
 Step 2: apply it to the query token
e Does the MLLM perform ICL in the same way?



How Do LLM Perform ICL

* The models are only pre-trained to predict next token. Why can they learn
the input-output relationship in the prompt?

e Different approaches for understanding the ICL ability

— Bayesian Perspective [Xie et al., 2021]

— Meta-learning Perspective [Chen et al., 2021]

- Meta-optimizer perspective [Oswald et al 2022, Ahn et al, 2023]

— Mechanistic Interpretations (induction heads in copy problems [Olsson et al., 2022])

— etc.
 Butless emphasis on the internal representations within models

How do MLLMs extract and differentiate task information from
shallow to deep layers during in-context learning ?



Tracing Hidden Representation

e Study layer-wise representations 2

beep 4 HEEEEEEEEE "

[IIIII;IIIIH—%(”

Transformer

Shallow | (I B EEEEEED B 1"

a > b b > ¢c g - h m -

« Denote the hidden representation of the last token at layer [ as hV,
knowns as task vector or in-context vector

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.
S Liu, H Ye, L Xing, J Zou, In-context vectors: Making in context learning more effective and controllable through latent space steering, ICML 2024.



Metric for Compression & Discrimination

 For each ICL task t (e.g. next letter prediction), generate N promots
z
O
Promptl: a—>b,b - c,c—>d,d—
_ Y
Prompt2: d - e,l >m,s > t,u —
B hy,
PromptN: m->n,f - g,i = j, k-

e Define mean vector and variance

N ROIE
h@("t)_ht HQ

_ ’ N
hi(EE) — ¥ i, b (E) var” = N Zist ‘



Metric for Compression & Discrimination

 TDNV (Task-Distance Normalized Variance) to capture the level of
compression and separation

14 14
TDNVE = §7 vary”) + vary)

iz |hY — By

2

2

* Within-task Variance: how well the representation from the same task
are compressed towards its own task mean

e Between-task Distance: how well the task means of different task are
discriminated from each other

Following a similar conceptual framework to Class-Distance Normalized Variance (CDNV)[6] by viewing each task as a class.



From Compression to Expression/Expansion

ﬁ’rogressive compression and then expression from shallow layers to deep Iayers]

10!
. . == Log(CDNV)
Compression Expression
Task Groups | Task Example 100
Copy Letter a—a
Next Letter a—b ’g
&)
To Uppercase a— A 9
81071
Letter-to-Letter Prev Letter b— a =
Next 2 Letter a—c
1072_
Algorithmic Tasks | | | | | |
1 5 9 13 17 21 25 29
Layers

* Compression phase: the model produces compact & discriminative
representation that captures the “rule/task/pattern” from the input data
* Expression phase: apply the compact representation to the input query

Jiachen Jiang, Yuxin Dong, Jinxin Zhou, Zhihui Zhu, From Compression to Expression: A Layerwise Analysis of In-Context Learning, 2025



Prevalence of the Phenomenon

{Universality across model architectures (Transformer & State-Space Model) }

—@— DeepSeek-Coder 7B
GPT-) 6B
-4 | LaMA3.2 3B

== Pythia 2.8B
== Mamba 2.8B

101_

TDNV

100_

0 5 10 15 20 25 30
Layer



Prevalence of the Phenomenon

Universality across task domains

Symbolic ICL (Beyond Algorithmic)

Translation

French — English
Spanish — English
English — French
English — Italian
English — Spanish

bonjour — hello
gracias — thank you
goodbye — au revoir
music — musica
thank you — gracias

Linguistic

Antonyms
Plural — Singular

Present Simple — Gerund
Present Simple — Past Perfect
Present Simple — Past Simple

Singular — Plural

hot — cold
cats — cat

run — running
walk — had walked

jump — jumped

TDNV

dog — dogs

Knowledge

Country — Capital
Football Player — Position

Location — Continent
Location — Country
Location — Language

Location — Religion

France — Paris
Lionel Messi — Forward

Brazil — South America
Kyoto — Japan
Egypt — Arabic

India — Hinduism

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.

100-

e a
—o— Linguistic

Translation
—a— Knowledge

0 10
Layer

20

30



Prevalence of the Phenomenon

Universality across task domains

Multimodality ICL (Beyond Language)

image color shape size texture
A yellow | triangle | small solid
blue square | large dots
red star large solid

black | pentagon| large checker

(]I[[I]} green circle small stripes

TDNV

Attribute Labels

Color red, green, blue, yellow, black

Shape circle, square, triangle, pentagon, star
Size small, medium, large

Texture solid, stripes, dots, checker

-
+
——

0

10 20 30
Layer
Model: Qwen-VL

Brandon Huang, Chancharik Mitra, Assaf Arbelle, Leonid Karlinsky, Trevor Darrell, Roei Herzig, Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning, NeurlPS 2024



Compression-Expression Emerges During Training

{Emergence during training

102 &

TDNV

ckpt-000(Random)

ckpt-001
=i Cckpt-002 _
10°! —g= ckpt-010 X
== ckpt-358(Final)

rY'rTor

0 5 10 15 20 25 30
Layer
e Before training: flat TDNV values across all layers

* During training: distinct U-shape curve emerges and deepens



Scaling Model Promotes Compression

{ Scaling up model size leads to more compressed representations }

2 ~@— Pythia 14M 1.0 e Bascline 10°
10 KS?S & | — ~@— Pythia 70M - ICL
\ =@~ Pythia 160M B TVICL
—@— Pythia 410M 081 —8— Lowest CDNV
S > s
O > )
> 9 %
3 ool “0.4 1002
0.2
[ T SN S ./ A S ———— 0.0/
1 3 5 7 9 11 13 15 17 19 21 23 14M 70M 160M

Model Size

Layers

Compressed level correlates with the ICL performance.



Number of Demonstrations Promotes Compression

p
Increasing in-context lengths (num of demonstrations K) leads to
more compressed representations.

N

102
K=1
K=2
101} £=3
; K=4
5 K=5
= K =6
109 K=7H
K=38
K=29
1075 5 10 15 20 25 30



Bias-variance Decomposition

60

40

next_letter, K=0
next_letter, K=1

 Different tasks induce task vectors in distinct
directions, yet each task follows a consistent Jr e
direction et Ko

20

e The variance within each task decreases A coener ots
4 )
(K] = T =) + g (K] — pigloa) + Ry oK) — gy (K
-.._-._II.‘__..r T g = o _—
\_ iusl repremninkion Eins VAT IR y

p(K) = Ei[h;  (K)]
pi(o0) = limg o0 Eilh ¢ (K)]



Decrease of Bias and Variance

0.8- Q% === O(1/K) 0.5- —*= O(1/K)
—e— Algorithmic —e— Algorithmic
m0'6' §0.4-
O @
@ @
i >
0.4 04
0.2-
2 4 6 8 2 4 6 8
K K
Decrease of Bias: Decrease of Variance:

) ool o o 1)

10 —mol: “O\K) B[t — m(B)*] | < O()

* A formal analysis for simplified models (linear attention)

Jiachen Jiang, Yuxin Dong, Jinxin Zhou, Zhihui Zhu, From Compression to Expression: A Layerwise Analysis of In-Context Learning, 2025



Task Vector Accuracy

 Query + task-vector h() s enough to perform ICL

peep (B NEEEEEEENE

SEEeEEEEEEE R

Transformer

shalow (I @ B D00 |
a —- b b—>C§—>hk—>

* How much the hidden representation captures the task information

Hendel, Geva, Globerson, In-Context Learning Creates Task Vectors, 2023.
S Liu, H Ye, L Xing, J Zou, In-context vectors: Making in context learning more effective and controllable through latent space steering, ICML 2024.




Early Exit Accuracy

Make prediction based on intermediate layer hidden states instead of last layer

Last Layer k?
Sl R R R R R R R B R B g@ieii ]
Deep / \
I,, \\\
\

/

\
\
\

(XXX XX XIinxnxgd |
R k?

Shallow [lllll;lllll]

a - b b -»c¢c g —-> h |j —»

Transformer

* How much the hidden representation captures the query information

DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. ACL 2020.



Layerwise Compression and Expression

Compression Expr71/_‘_< .

—il—= TDNV
—8— Task Vector Accuracy
—A— Early-exit Accuracy

]
o

102,

o
[e¢]

o
o

Accuracy

101_

TDNV

o
N

100.

i
N

o
o

1 5 9 13 17 21 25 29
Layers

 The most compact representation (smallest TDNV) achieves best Task
Vector Accuracy (Query + task-vector p (V)
* Early-exit Accuracy starts increasing after the most compact layer



Promoting Compression Improves Performance

{ Task-vector contrastive fine-tuning improves task-vector accuracy

=
=

B CE Loss
B CE + Contrastive Loss

o
©

104

TDNV
o
o

1071

<
~

Task Vector Accuracy

o
N

== CE Loss
10-2{ =@= CE + Contrastive Loss

©
o

0 2 4 6 8 10 7 next  nextupper  next2 prev upper
Layer Tasks

e Method: during fine-tuning on ICL tasks, add contrastive loss on
intermediate layer features to encourage compression

* Results: more compressed representations yield better performance;
task-vector accuracy improves by 20%



C )
Linear, compact, and structured representation emerges in deep

classifiers and (multimodal) large language models

10!

1.0

Compression

Expa nsio;wm

,—.M
100

A

== Log(CDNV)

—&— Early-exit Accuracy
—@— Task Vector Accuracy

Layer1 Layer 2 Layer 4 Layer 6
0.8

4|i7 i 5?0.6
) | s

log(CDNV)

1071

‘ = 0.2

1072

1 5 9 13 17 21 25 29

///"

The objective of learning: Transform nonlinear and complex data to
a linear, compact, and structured representation.
The effect of depth: Progressively achieve this goal through layer-
wise transformation y

(¥




This Tutorial: The Outline

e Session I: Introduction of Basic Low-dimensional Models

* Session ll: Understanding Low-Dimensional Structures in Representation Learning

- Lec 2.1: Bridging Symbolic Abstraction and Low-Dimensionality in Machine Reasoning:
Algebraic and Geometric Perspectives

- Lec 2.2: Emergency of Low-dimensional Representations in Deep Models

e Session lll: Understanding Low-Dimensional Structures in Diffusion Generative
Models (starts from 1PM)

- Lec 3.1: Low-Dimensional Models for Understanding Generalization in Diffusion Models

— Lec 3.2: Explore Low-Dimensional Structures for Constrained and Controllable Diffusion
Models in Scientific Applications

e Session IV: Desighing Deep Networks for Pursuing Low-Dimensional
Structures

- Lec 4.1: ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
- Lec 4.2: White-Box Transformers via Sparse Rate Reduction

e Session V: Panel Discussion: Sara Fridovich-Keil, Berivan Isik, Vladimir Pavlovic
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