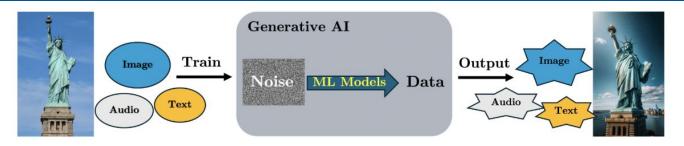
Explore Low-Dimensional Structures for Constrained and Controllable Diffusion Models in Scientific Applications Liyue Shen

Assistant Professor
Electrical and Computer Engineering
University of Michigan

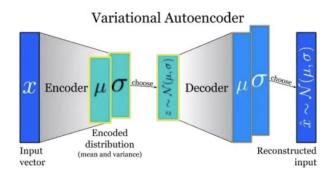
This Tutorial

- Session I: Introduction of Basic Low-dimensional Models
- Session II: Understanding Low-Dimensional Structures in Representation Learning
- Session III: Understanding Low-Dimensional Structures in Diffusion Generative Models
 - Low-Dimensional Models for Understanding Generalization in Diffusion Models Qing Qu
 - Explore Low-Dimensional Structures for Constrained and Controllable Diffusion Models in Scientific Applications - Liyue Shen
- Session IV: Designing Deep Networks for Pursuing Low-Dimensional Structures
- Session V: Panel Discussion

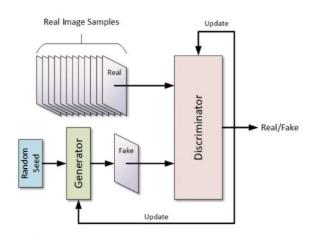
Recap: The Family of Generative Models



Generative models in the past:



(a) VAE (Kingma & Wellings, 2013): poor generation quality.



(b) GAN (Goodfellow et al. 2014): unstable to train on large dataset.

Why is Diffusion Model?

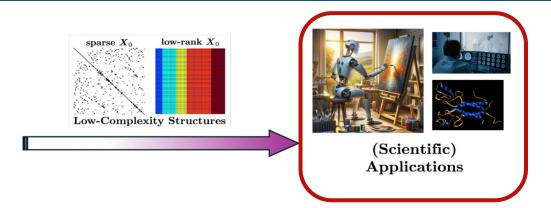
Mathematical Foundations



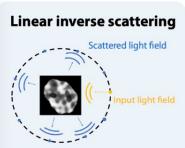
Low-dimensional structures are the key to address real-world high-dimensional data with small data regime in scientific applications

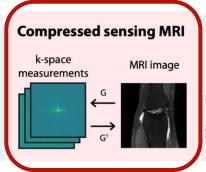
Application of Diffusion Model: Solving Inverse Problems

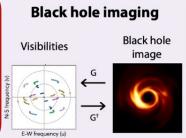
Mathematical Foundations

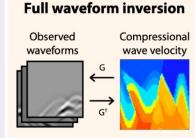


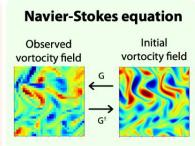
Inverse problems are common and important in scientific applications





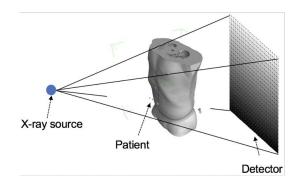




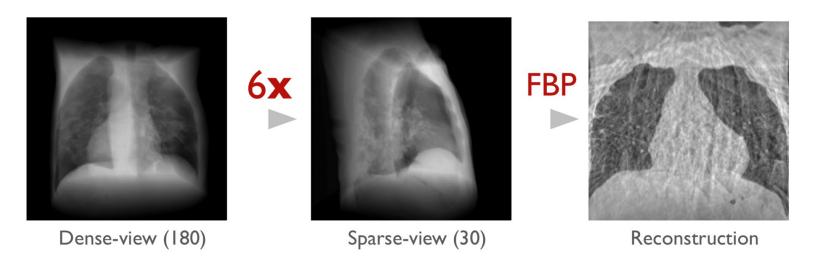


X-ray Computed Tomography (CT) imaging

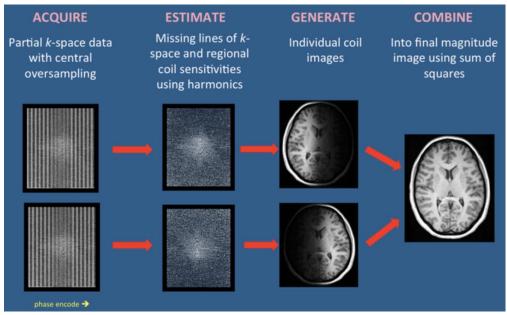
 Reconstruct cross-sectional images of internal structures from X-ray projections at multiple views



- X-ray Computed Tomography (CT) imaging
 - Reconstruct cross-sectional images of internal structures from X-ray projections at multiple views
- Reduce radiation dose in CT scanning
 - Sample sparse projections from fewer views



- Magnetic Resonance Imaging (MRI)
 - Reconstruct cross-sectional images of internal structures from measurements in frequency space

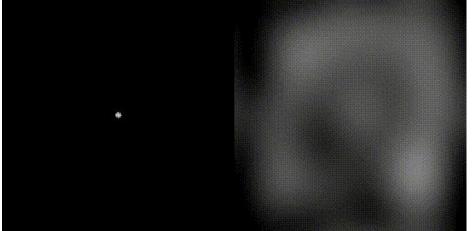


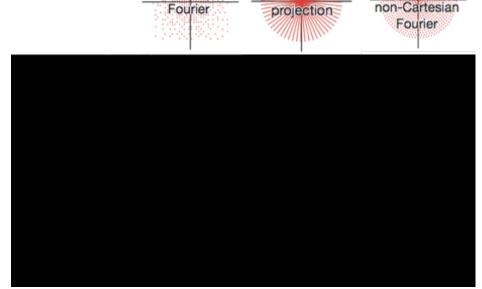
Magnetic Resonance Imaging (MRI)

Reconstruct cross-sectional images of internal structures from measurements in frequency space

Accelerate MRI scan

Undersample frequency space data





Radon

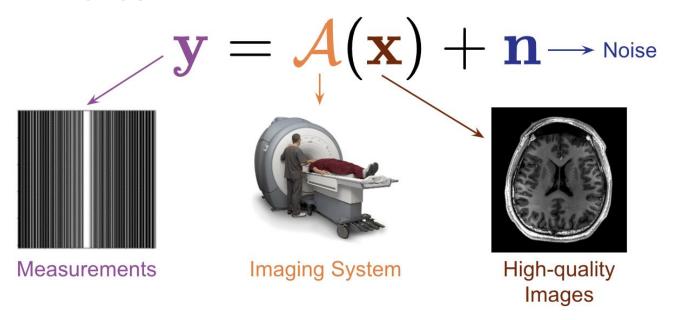
Undersampled

Image credit: https://mriquestions.com/k-space-trajectories.html

Spiral

Inverse Problem in Medical Imaging

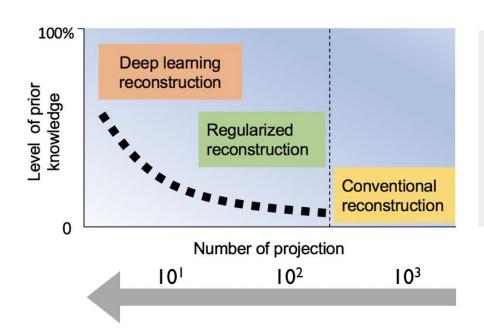
Medical imaging process can be formulated as:



Inverse problem: reconstruct original image from sparse measurements

Leverage Prior Knowledge for Solving Ill-posed Inverse Problem

- Conventional reconstruction: require dense sampling
- Regularized reconstruction: sparsity in transformed domain
- Deep learning reconstruction: learned prior from a data-driven way

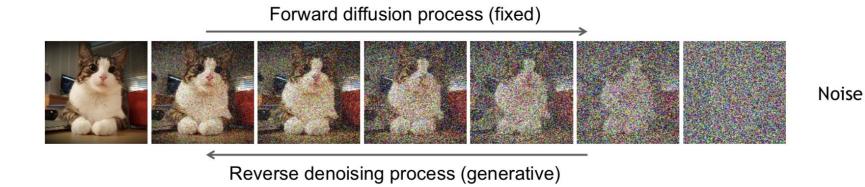


Diffusion model:

Provide prior knowledge of data distribution for solving inverse problems

Recap: Diffusion Models

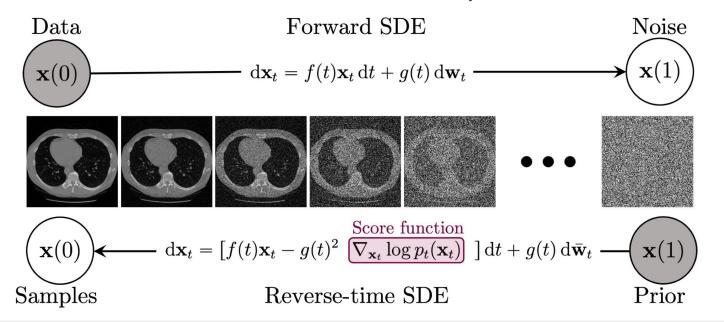
Data



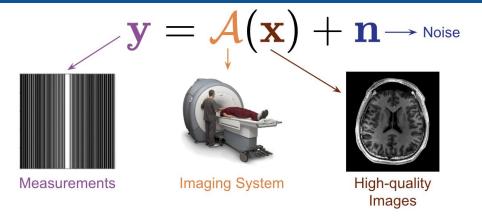
- Forward diffusion process with noise added
- Reverse denoising process for generative diffusion sampling

Recap: Score-based Diffusion Models

- Forward diffusion process as stochastic differential equation (SDE)
- Generative reverse stochastic differential equation



Diffusion models learn data prior by modeling data distribution through unsupervised training

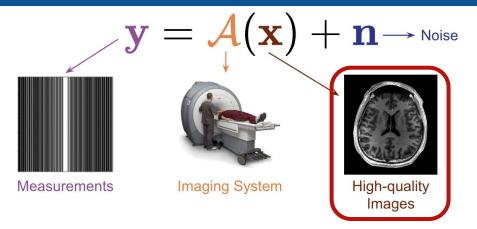


From Bayes' rule:

$$p(\mathbf{x} \mid \mathbf{y}) = p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) / \int p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}$$

• Compute the posterior score function:

$$abla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) =
abla_{\mathbf{x}} \log p(\mathbf{x}) +
abla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$$



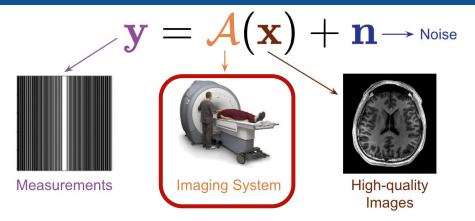
• From Bayes' rule:

$$p(\mathbf{x} \mid \mathbf{y}) = p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) / \int p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}$$

• Compute the posterior score function:

$$abla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) =
abla_{\mathbf{x}} \log p(\mathbf{x}) +
abla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$$

Score function of data distribution



From Bayes' rule:

$$p(\mathbf{x} \mid \mathbf{y}) = p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) / \int p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}$$

Compute the posterior score function:

$$abla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) =
abla_{\mathbf{x}} \log p(\mathbf{x}) +
abla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$$

Known forward process

Forward Process of Sparse-sampling Medical

Forward model:

- Physics-based transformation
- Sparse sampling mask of observed measurements

x: image

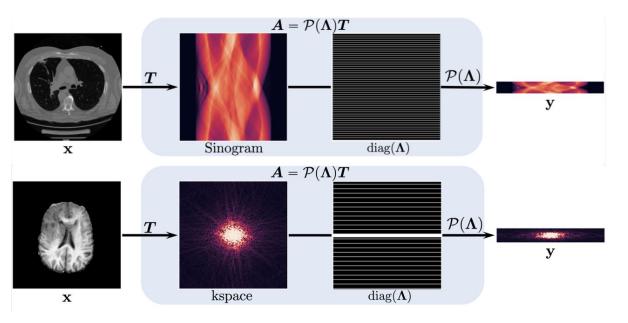
y: observed measurements

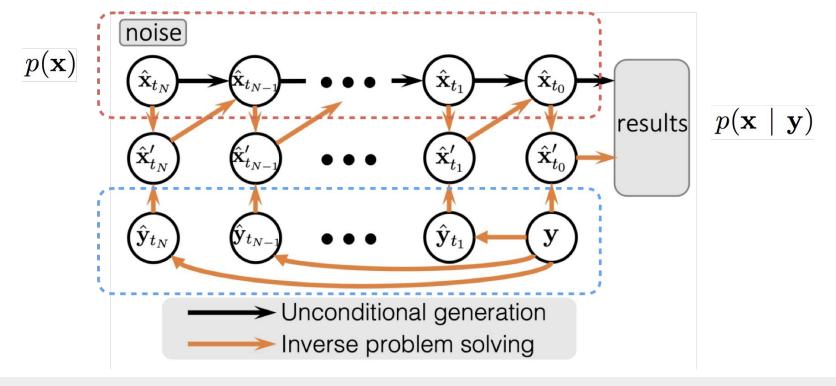
A: forward model

T: transformation

Λ: sampling mask

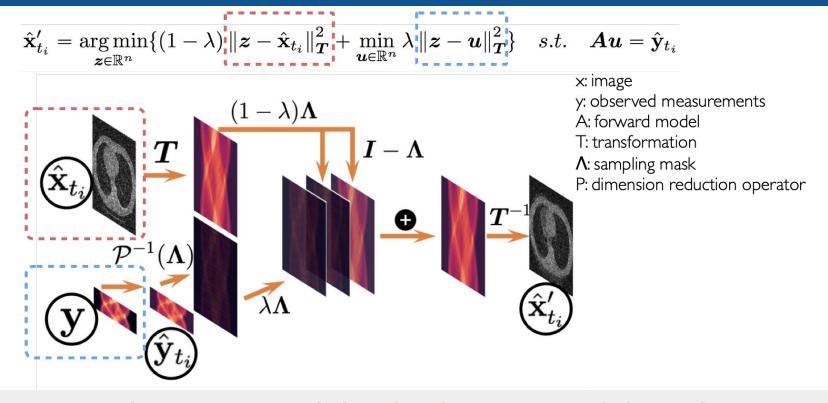
P: dimension reduction operator





Posterior sampling consistent with data distribution prior and observed measurements

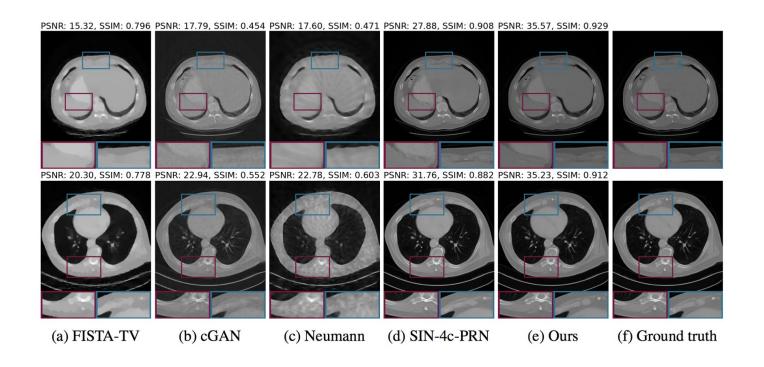
Optimization Objective



Posterior sampling consistent with data distribution prior and observed measurements

Advantages of Diffusion Inverse Solvers

- No assumption of measurements sampling during training
- Comparable or better performance to supervised learning methods



Advantages of Diffusion Inverse Solvers

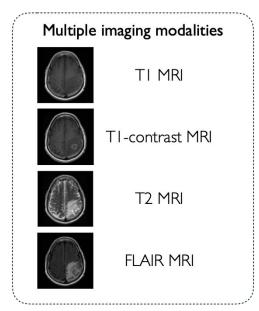
- Generalizable to solve different inverse problems at inference time
 - Different number of projections in CT reconstruction
 - Different acceleration factors in MRI reconstruction
 - A single training model captures data distribution prior of multi-anatomic sites and multi-modal images

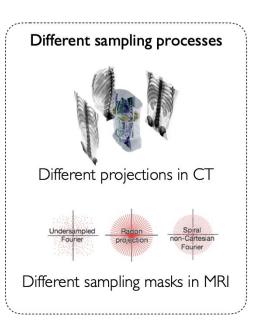
Multiple anatomic sites

Head CT

Lung CT

Abdominal CT



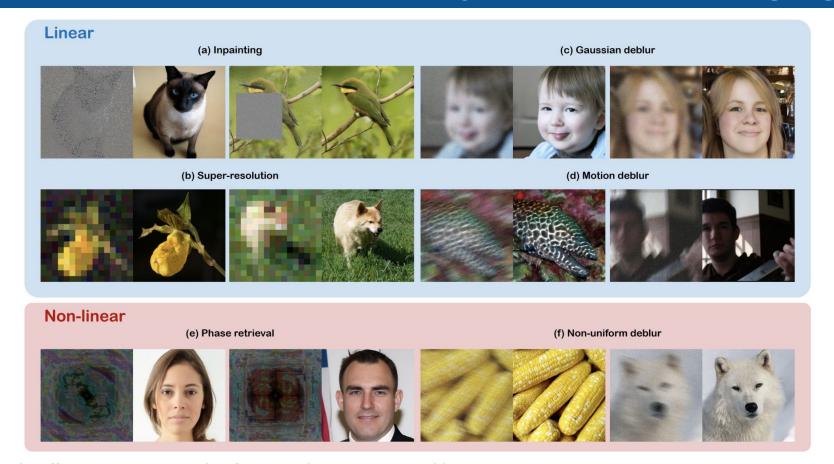


Diffusion Inverse Solvers in Medical Imaging

Lots of literatures:

- Song et al., "Solving Inverse Problems in Medical Imaging with Score-Based Generative Models", ICLR, 2022
- Jalal et al., "Robust Compressed Sensing MRI with Deep Generative Priors", NeurIPS, 2021
- Chung and Ye, "Score-based diffusion models for accelerated MRI", Medical Image Analysis, 2022
- Chung et al., "Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction", CVPR, 2022
- Peng et al., "Towards performant and reliable undersampled MR reconstruction via diffusion model sampling", arXiv, 2022
- Xie and Li, "Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction", arXiv, 2022
- Luo et al, "MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation", arXiv, 2022
- O

Diffusion Inverse Solvers beyond Medical Imaging



Diffusion Posterior Sampling for General Inverse Problems

Posterior mean estimation: x_0 x_0 x_t x_t

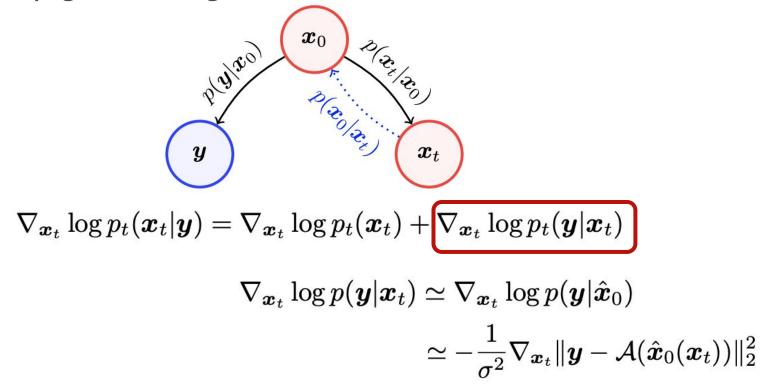
$$abla_{oldsymbol{x}_t} \log p_t(oldsymbol{x}_t | oldsymbol{y}) =
abla_{oldsymbol{x}_t} \log p_t(oldsymbol{x}_t) +
abla_{oldsymbol{x}_t} \log p_t(oldsymbol{y} | oldsymbol{x}_t)$$

$$\hat{oldsymbol{x}}_0 := \mathbb{E}[oldsymbol{x}_0 | oldsymbol{x}_t] = rac{1}{\sqrt{ar{lpha}(t)}} (oldsymbol{x}_t + (1 - ar{lpha}(t))
abla_{oldsymbol{x}_t} \log p_t(oldsymbol{x}_t))$$

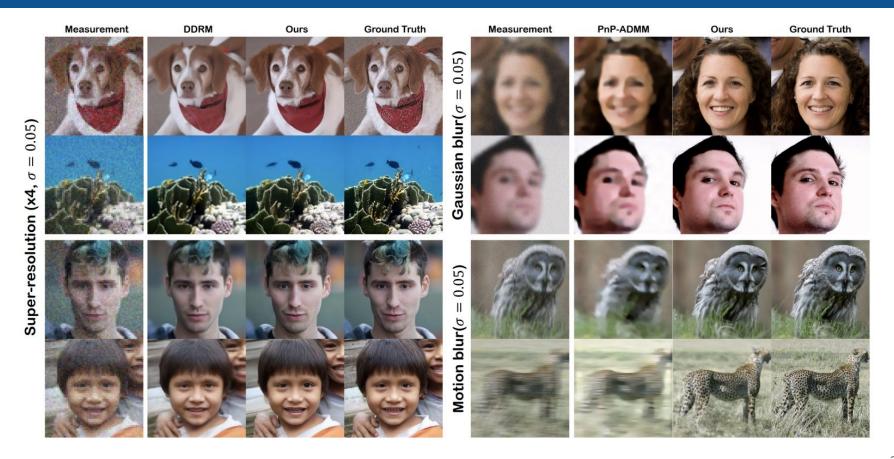
$$p(m{y}|m{x}_t) \simeq p(m{y}|\hat{m{x}}_0), \quad ext{where} \quad \hat{m{x}}_0 := \mathbb{E}[m{x}_0|m{x}_t] = \mathbb{E}_{m{x}_0 \sim p(m{x}_0|m{x}_t)}[m{x}_0]$$

Diffusion Posterior Sampling for General Inverse Problems

Take backpropagation through network:



Diffusion Posterior Sampling for General Inverse Problems



Diffusion Inverse Solvers

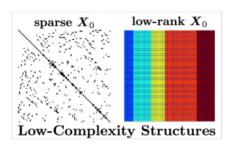
Category	Method	SVD	Pseudo inverse	Linear	Gradient
Linear guidance	DDRM	1	✓	✓	
	DDNM	×	✓	1	
	ПБВМ	×	✓	×	
General guidance	DPS	×	×	×	✓
	LGD	×	×	×	✓
	DPG	×	×	×	×
	SCG	×	×	×	×
	EnKG	×	×	×	×
Variable-splitting	DiffPIR	×	×	×	✓
	PnP-DM	×	×	×	✓
	DAPS	×	×	×	✓
Variational Bayes	RED-diff	×	×	×	✓
Sequential Monte Carlo	FPS	×	×	✓	
	MCGDiff	✓	✓	✓	

Challenges of Diffusion Inverse Solvers in Scientific Applications

Efficiency

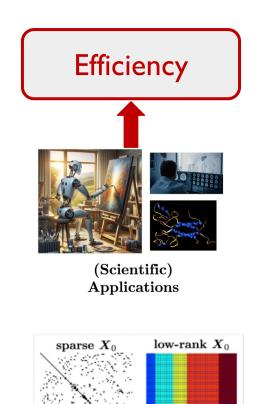
(Scientific) Applications

Generalizability

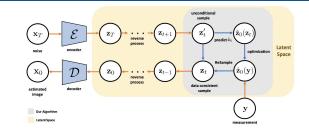


Controllability

Challenges of Diffusion Inverse Solvers in Scientific Applications



Low-Complexity Structures



Generalizability

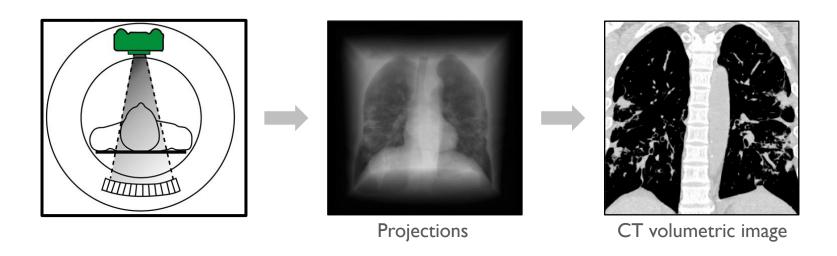
Controllability

Limitations of Diffusion Inverse Solvers

- Requires large-scale training data
 - 50k ~ 300k images
- Slow training and sampling process
 - ~1000 sampling steps
- Expensive GPU memory cost for high-dimensional data
 - Most models only apply to 2D images
-

Limitations of Diffusion Inverse Solvers

- Real-world applications is mostly about high-dimensional and high-resolution data!
 - o 3D volumetric CT images with standard resolution of 512³



Limitations of Diffusion Inverse Solvers

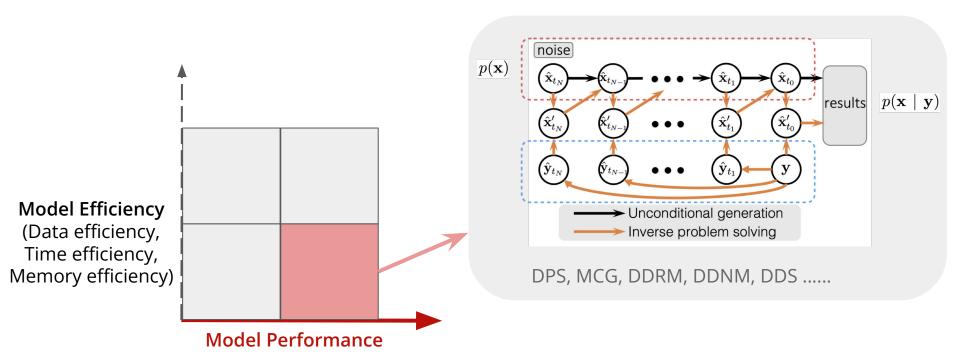
- Real-world applications is mostly about high-dimensional and high-resolution data!
 - 3D volumetric CT images with standard resolution of 512³
 - 4D MRI images with time sequence
 - High-resolution satellite images with thousands of pixels

0

How to enable diffusion model for solving large-scale inverse problems?

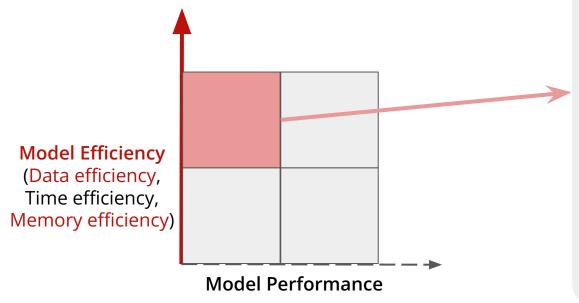
Enhance Diffusion Model Efficiency

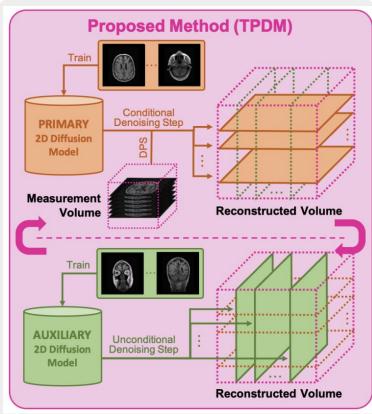
- Focus on improving model performance
- Achieve impressive results for 2D images



Enhance Diffusion Model Efficiency

- Improve data and memory efficiency for tackling high-dimensional data
 - Solve 3D imaging problems by using 2D diffusion priors





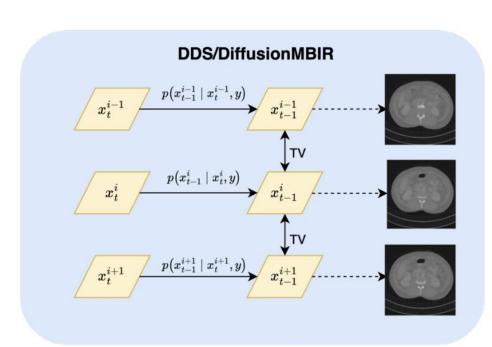
DiffusionMBIR: Model-based Iterative

- Solve 3D imaging problems by using 2D diffusion priors
- Regularized objective:

$$\min_{m{x}} rac{1}{2} \|m{y} - m{A}m{x}\|_2^2 + \|m{D}_zm{x}\|_1,$$

- Iterative solver:
 - Parallel denoising for each slice
 - Z-directional TV prior to impose consistency

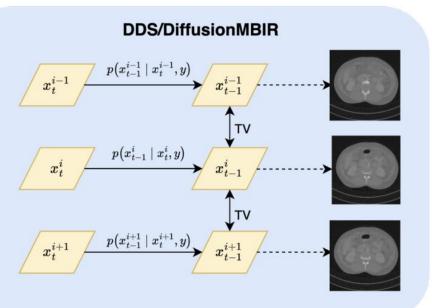
$$egin{aligned} m{x}_{i-1}' &\leftarrow \mathrm{Solve}(m{x}_i, m{s}_{ heta^*}), \ m{x}_{i-1} &\leftarrow \operatorname*{argmin} rac{1}{2} \|m{y} - m{A}m{x}_{i-1}'\|_2^2 + \|m{D}_zm{x}_{i-1}'\|_1. \end{aligned}$$



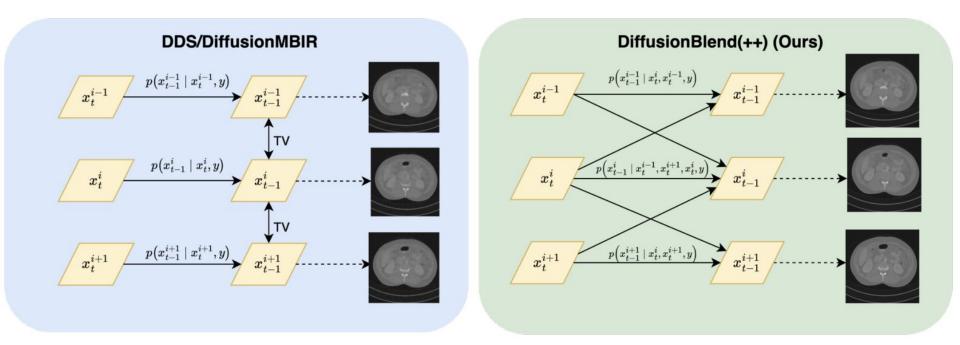
Slice-by-slice Reconstruction with 2D Diffusion Priors

• Limitation:

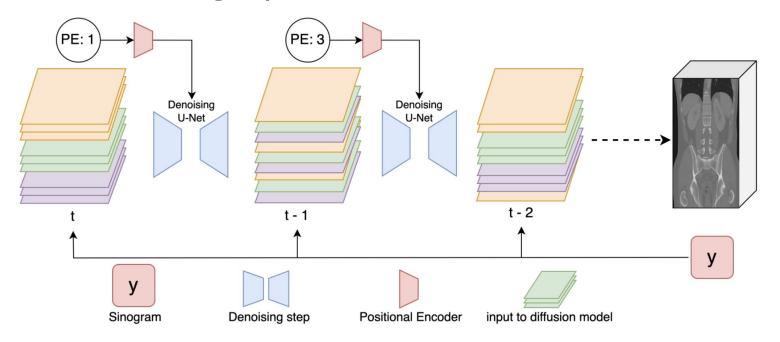
- Rely on additional regularization or impractical assumption
- Compromise model performance on cross-slice consistency
- o Increase inference time (TPDM: 24 to 36 hours per volume!)



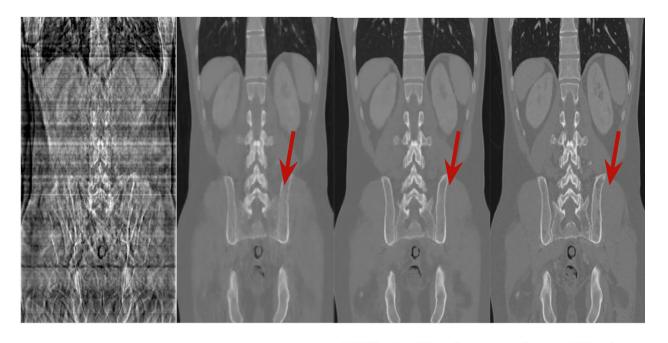
- Learn 3D-patch image prior by incorporating cross-slice dependency
- Blend learned diffusion score between groups of slices



- Enforce cross-slice consistency for 3D volume without hand-crafted regularization
- Positional encoding: separation between the slices



- Enable 3D CT reconstruction with high-dimensional 3D image (256×256×500)
- Enhance cross-slice consistency on z-axis



FBP DDS DiffusionBlend++ Ground Truth

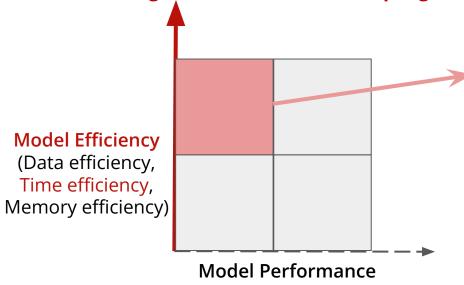
Achieve SOTA in DIS methods for (ultra-)sparse-view CT reconstruction

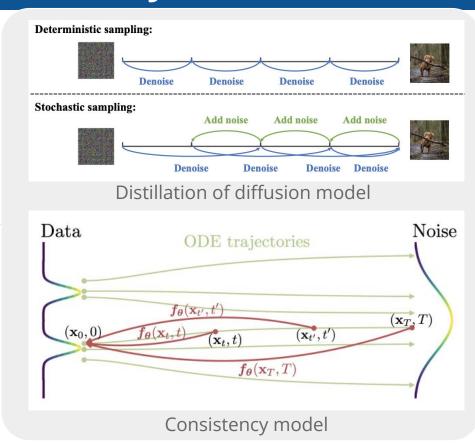
	Sparse-View CT Reconstruction on AAPM					Sparse-View CT Reconstruction on LIDC						
Method	8 views		6 views		4 views		8 Views		6 Views		4 Views	
	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑
FBP	14.64	0.325	13.18	0.268	11.16	0.236	14.78	0.206	14.10	0.181	13.10	0.165
FBP-UNet	27.34	0.878	25.12	0.827	24.10	0.810	28.87	0.858	26.59	0.793	25.37	0.744
DiffusionMBIR	29.86	0.908	28.12	0.875	25.68	0.843	33.29	0.922	31.69	0.903	29.21	0.868
TPDM	-	82	-	-	-	-	28.12	0.833	25.78	0.804	22.29	0.735
DDS 2D	33.64	0.950	32.33	0.939	30.25	0.916	31.60	0.898	29.99	0.871	28.03	0.830
DDS	33.97	0.934	32.95	0.879	30.89	0.932	32.51	0.920	30.83	0.898	27.61	0.828
DiffusionBlend (Ours)	36.45	0.958	35.23	0.952	33.98	0.944	34.47	0.934	31.48	0.908	28.24	0.859
DiffusionBlend++ (Ours)	37.87	0.968	36.66	0.963	34.27	0.955	35.66	0.947	33.97	0.935	31.38	0.913

Enhance Diffusion Model Efficiency

Improve time efficiency

- Enable sampling as few as 1~4 steps for image generation
- How to improve time efficiency for high-dimensional data sampling?

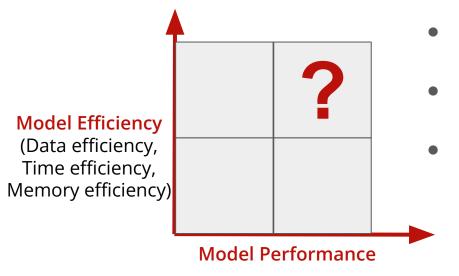




Enable Diffusion Model for High-dimensional High-resolutionData

Open Question:

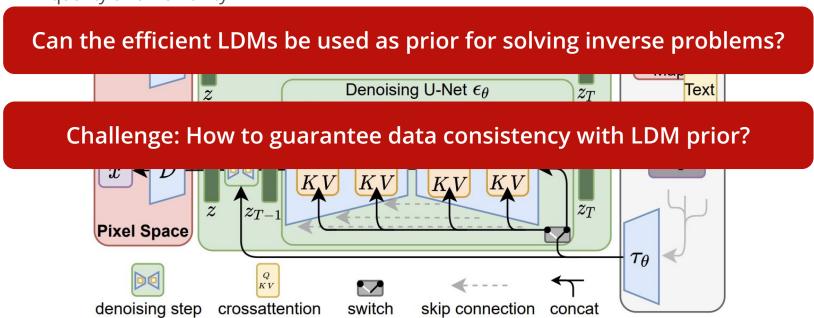
Can we achieve better model efficiency while maintaining model performance?



- Improve data efficiency:
 - Require less training data
- Improve memory efficiency:
 - Reduce memory cost
- Improve time efficiency:
 - Faster training/sampling process

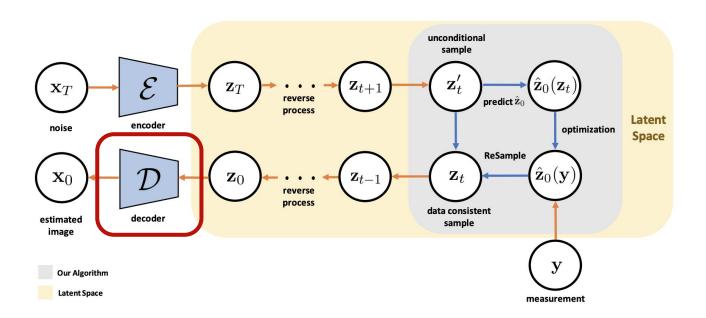
Latent Diffusion Model (LDM)

- Train diffusion model in low-dimensional latent space
 - Encoder-decoder models project data to low-dimensional latent space
 - Enable diffusion model training on limited computational resources while retaining quality and flexibility



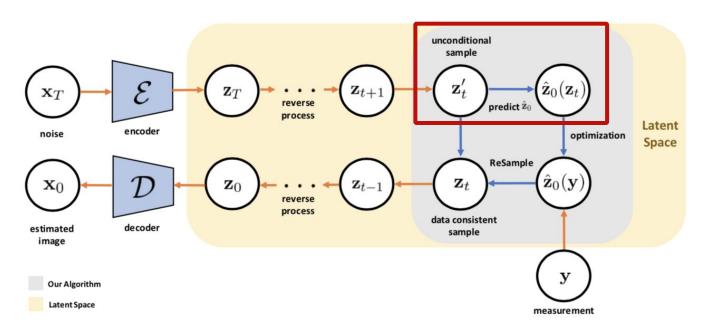
Challenge: Guarantee Data Consistency with LDM

- Non-linearity from pretrained decoder
- ReSample: solve general (linear and nonlinear) inverse problems with pre-trained LDMs



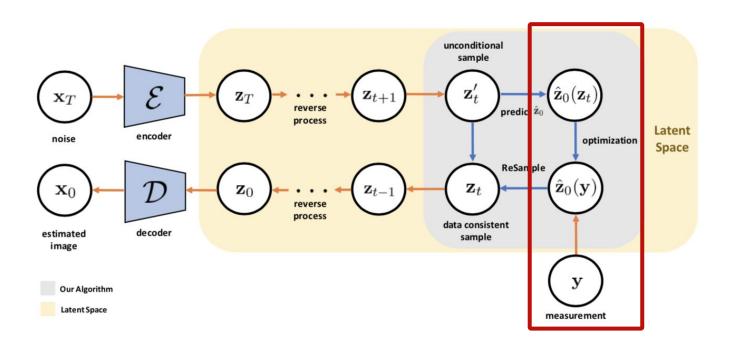
Posterior mean estimation:

$$\hat{\mathbf{z}}_0(\mathbf{z}_t) = \mathbb{E}[\mathbf{z}_0|\mathbf{z}_t] = \frac{1}{\sqrt{\bar{\alpha}_t}}(\mathbf{z}_t + (1 - \bar{\alpha}_t)\nabla \log p(\mathbf{z}_t))$$

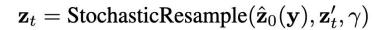


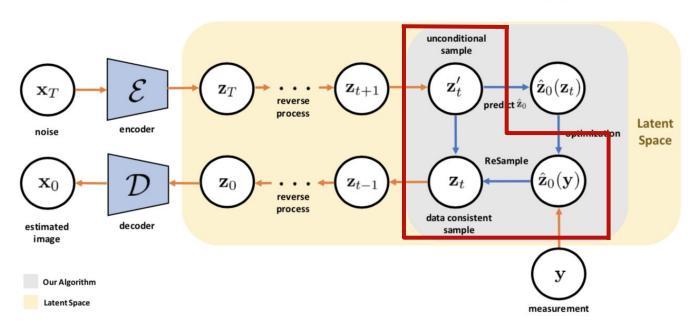
Optimization objective:

$$\hat{\mathbf{z}}_0(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{z}} \left(\frac{1}{2} \| \mathbf{y} - \mathcal{A}(\mathcal{D}(\mathbf{z})) \|_2^2 \right)$$



Stochastic resampling combines prior consistency and data consistency





Proposition 1 (Stochastic Encoding). Since the sample $\hat{\mathbf{z}}_t$ given $\hat{\mathbf{z}}_0(\mathbf{y})$ and measurement \mathbf{y} is conditionally independent of \mathbf{y} , we have that

$$p(\hat{\mathbf{z}}_t|\hat{\mathbf{z}}_0(\mathbf{y}),\mathbf{y}) = p(\hat{\mathbf{z}}_t|\hat{\mathbf{z}}_0(\mathbf{y})) = \mathcal{N}(\sqrt{\bar{\alpha}_t}\hat{\mathbf{z}}_0(\mathbf{y}), (1-\bar{\alpha}_t)\mathbf{I}).$$

Proposition 2 (Stochastic Resampling). Suppose that $p(\mathbf{z}_t'|\hat{\mathbf{z}}_t, \hat{\mathbf{z}}_0(\mathbf{y}), \mathbf{y})$ is normally distributed such that $p(\mathbf{z}_t'|\hat{\mathbf{z}}_t, \hat{\mathbf{z}}_0(\mathbf{y}), \mathbf{y}) = \mathcal{N}(\mu_t, \sigma_t^2)$. If we let $p(\hat{\mathbf{z}}_t|\hat{\mathbf{z}}_0(\mathbf{y}), \mathbf{y})$ be a prior for μ_t , then the posterior distribution $p(\hat{\mathbf{z}}_t|\mathbf{z}_t', \hat{\mathbf{z}}_0(\mathbf{y}), \mathbf{y})$ is given by

$$p(\hat{\mathbf{z}}_t|\mathbf{z}_t',\hat{\mathbf{z}}_0(\mathbf{y}),\mathbf{y}) = \mathcal{N}\left(\frac{\sigma_t^2}{\sigma_t^2}\sqrt{\bar{\alpha}_t}\hat{\mathbf{z}}_0(\mathbf{y}) + (1-\bar{\alpha}_t)\mathbf{z}_t'}{\sigma_t^2 + (1-\bar{\alpha}_t)}, \frac{\sigma_t^2(1-\bar{\alpha}_t)}{\sigma_t^2 + (1-\bar{\alpha}_t)}\mathbf{I}\right).$$

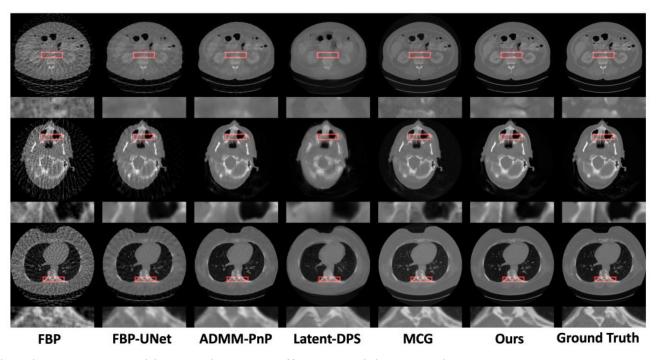
Hyperparameter controlling the tradeoff between data consistency and prior consistency

Results in natural images:

- Tasks: super resolution, inpainting, Gaussian deblurring, non-linear deblurring
- Datasets: FFHQ dataset, CelebA-HQ dataset, LSUN-Bedroom dataset



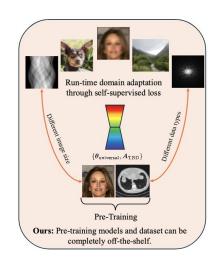
- Data efficiency: use pre-trained encoder / decoder from natural images
- Fine-tune latent diffusion models using 2000 CT images



- Achieve SOTA results for sparse-view CT image reconstruction using low-dimensional prior in latent space
- Outperform pixel-space diffusion models trained with more data samples

Method	Abdo	ominal	Н	ead	Chest		
Method	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	
Latent-DPS	26.80 ± 1.09	0.870 ± 0.026	28.64 ± 5.38	0.893 ± 0.058	25.67 ± 1.14	0.822 ± 0.033	
MCG (Chung et al., 2022)	29.41 ± 3.14	0.857 ± 0.041	28.28 ± 3.08	0.795 ± 0.116	27.92 ± 2.48	0.842 ± 0.036	
DPS (Chung et al., 2023a)	27.33 ± 2.68	0.715 ± 0.031	24.51 ± 2.77	0.665 ± 0.058	24.73 ± 1.84	0.682 ± 0.113	
PnP-UNet (Gilton et al., 2021)	32.84 ± 1.29	0.942 ± 0.008	33.45 ± 3.25	0.945 ± 0.023	29.67 ± 1.14	0.891 ± 0.011	
FBP	26.29 ± 1.24	0.727 ± 0.036	26.71 ± 5.02	0.725 ± 0.106	24.12 ± 1.14	0.655 ± 0.033	
FBP-UNet (Jin et al., 2017)	32.77 ± 1.21	0.937 ± 0.013	31.95 ± 3.32	0.917 ± 0.048	29.78 ± 1.12	0.885 ± 0.016	
ReSample (Ours)	35.91 ± 1.22	0.965 ± 0.007	37.82 ± 5.31	0.978 ± 0.014	31.72 ± 0.912	0.922 ± 0.011	

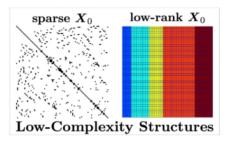
Challenges of Diffusion Inverse Solvers in Scientific Applications



Generalizability

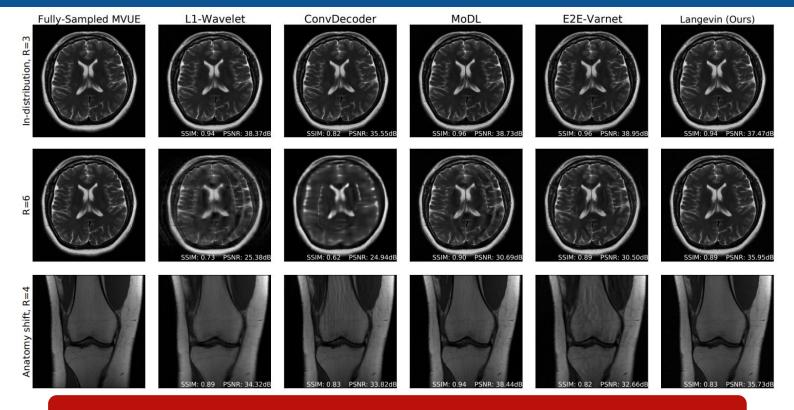
Efficiency

(Scientific) Applications



Controllability

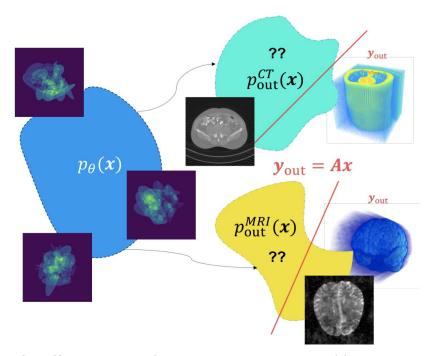
Generalizability of Diffusion Priors



How generalizable is the learned diffusion prior?

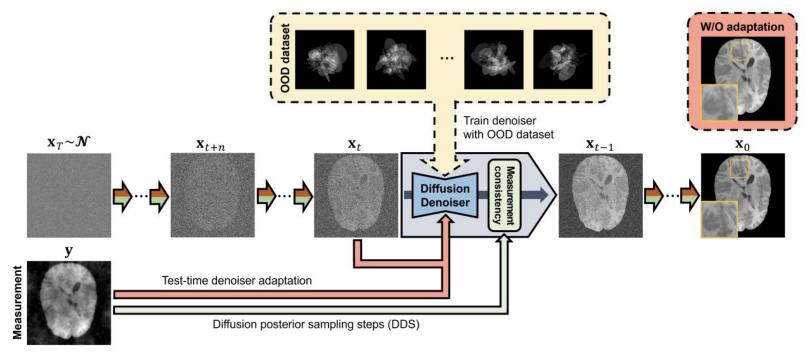
Out-of-Distribution (OOD) Inverse Problems

- Pretrained diffusion model learns prior
- At test-time, obtain measurements from unknown OOD distributions



Steerable Conditional Diffusion for OOD Adaptation

- Self-supervised loss for LoRA adaptation
- Enables DIS model adaptation for OOD tasks using a single corrupted measured data

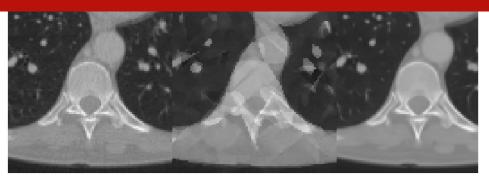


Steerable Conditional Diffusion for OOD Adaptation

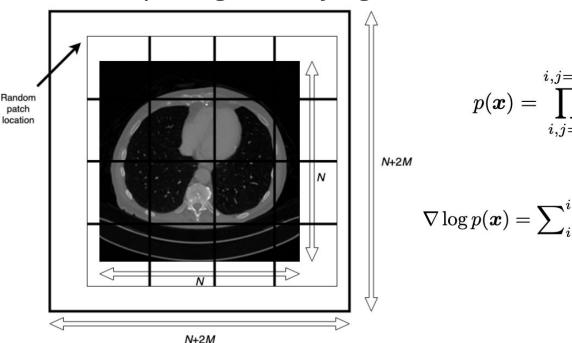
- Training: synthetic ellipses images
- Test: computed tomography images

Ground Truth OOD Diffusion Prior Correct Diffusion Prior

Would low-dimensional image patches preserve more transferable features in OOD scenarios?



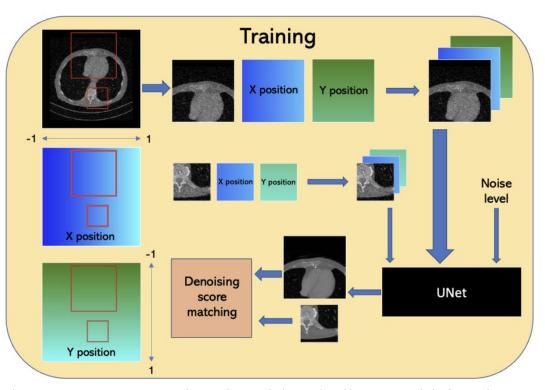
- Learn score function of whole image through scores of patches with positional encoding
- Zero-padding boundary region to enable shifting patch locations



$$p(m{x}) = \prod_{i,j=1}^{i,j=M} p_{i,j,B}(m{x}_{i,j,B}) \prod_{r=1}^{(k+1)^2} p_{i,j,r}(m{x}_{i,j,r})/Z,$$

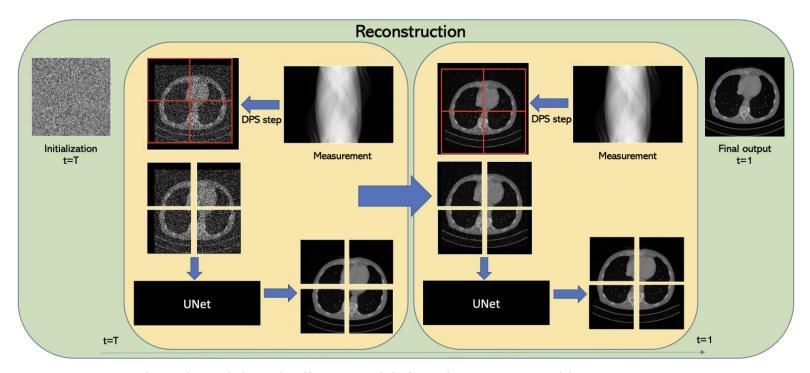
$$abla \log p(oldsymbol{x}) = \sum
olimits_{i,j=1}^{i,j=M} \left(oldsymbol{s}_{i,j,B}(oldsymbol{x}_{i,j,B}) + \sum
olimits_{r=1}^{(k+1)^2} oldsymbol{s}_{i,j,r}(oldsymbol{x}_{i,j,r})
ight)$$

Improve training efficiency

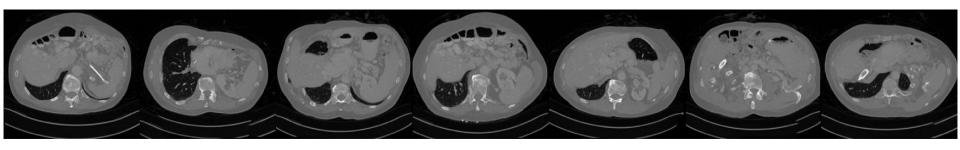


- Memory efficiency
 - Only input image patches
- Data efficiency
 - 2000~3000 training samples
- Training Time efficiency
 - Patch image model: ~12 hours
 - Whole image model: 24~36 hours

- Random partition in each sampling step
- No boundary artifacts because of shifting patch locations



Generate entire images via positional encoding



- For in-distribution inverse problems
- Comparable or even better results as whole-image DIS models

-										
Method	CT, 20 Views		CT, 8 Views		Deblu	irring	Superresolution			
Method	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM [↑]	PSNR ↑	SSIM↑		
Baseline	24.93	0.595	21.39	0.415	24.54	0.688	25.86	0.739		
ADMM-TV	26.82	0.724	23.09	0.555	28.22	0.792	25.66	0.745		
PnP-ADMM [42]	26.86	0.607	22.39	0.489	28.82	0.818	26.61	0.785		
PnP-RED [46]	27.99	0.622	23.08	0.441	29.91	0.867	26.36	0.766		
Whole image diffusion	32.84	0.835	25.74	0.706	30.19	0.853	29.17	0.827		
Langevin dynamics [1]	33.03	0.846	27.03	0.689	30.60	0.867	26.83	0.744		
Predictor-corrector [19]	32.35	0.820	23.65	0.546	28.42	0.724	26.97	0.685		
VE-DDNM [7]	31.98	0.861	27.71	0.759	-	_	26.01	0.727		
Patch Averaging [23]	33.35	0.850	28.43	0.765	29.41	0.847	27.67	0.802		
Patch Stitching [66]	32.87	0.837	26.71	0.710	29.69	0.849	27.50	0.780		
PaDIS (Ours)	33.57	0.854	29.48	0.767	30.80	0.870	29.47	0.846		

- For out-of-distribution (OOD) inverse problems with mismatching distribution (training data: synthetic ellipses, testing data: CT images)
- Low-dimensional patch-based diffusion model training enhance generalization and robustness for OOD tasks

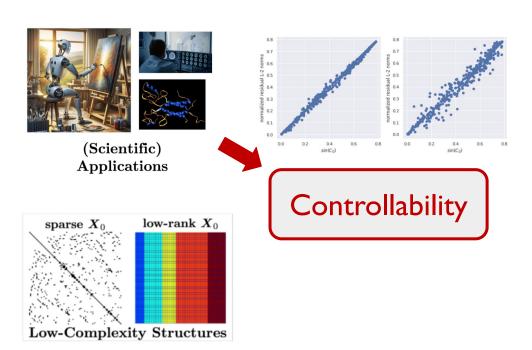
Mathad	CT, 20 Views		CT, 60 Views		Deblurring		Superresolution	
Method	PSNR↑	SSIM↑	PSNR ↑	SSIM [↑]	PSNR ↑	SSIM↑	PSNR ↑	SSIM↑
Baseline	24.93	0.613	30.15	0.784	23.93	0.666	25.42	0.724
ADMM-TV	26.81	0.750	31.14	0.862	27.58	0.773	25.22	0.729
PnP-ADMM (Xu et al., 2020)	30.20	0.838	36.75	0.932	28.98	0.815	27.29	0.796
PnP-RED (Hu et al., 2022)	27.12	0.682	32.68	0.876	28.37	0.793	27.73	0.809
Whole image, naive	28.11	0.800	33.10	0.911	25.85	0.742	25.65	0.742
Patches, naive (Hu et al., 2024)	27.44	0.719	33.97	0.934	26.77	0.782	26.12	0.759
Self-supervised, whole (Barbano et al., 2023)	33.19	0.861	40.47	0.957	29.50	0.831	27.07	0.701
Self-supervised, patch (Ours)	33.77	0.874	41.45	0.969	30.34	0.860	28.10	0.827
Whole image, correct*	33.99	0.886	41.67	0.969	29.87	0.851	28.33	0.801
Patches, correct*	34.02	0.889	41.70	0.967	30.12	0.865	28.49	0.835

^{*}not available in practice for mismatched distribution inverse problems

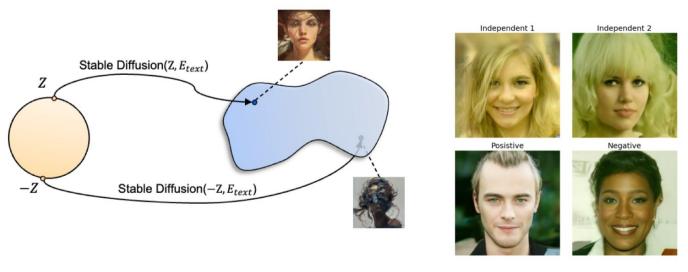
Challenges of Diffusion Inverse Solvers in Scientific Applications

Efficiency

Generalizability



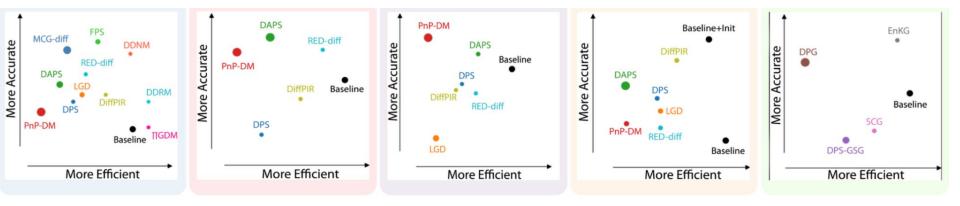
- Diffusion models provide potential sampling from posterior distribution
- Initial noise space of diffusion model offers an inherent (low-dimensional) latent structures of high-dimensional data!



(a) Stable Diffusion

(b) CelebA-HQ

- Diffusion models provide potential sampling from posterior distribution
- Initial noise space of diffusion model offers an inherent (low-dimensional) latent structures of high-dimensional data!
- Uncertainty estimation is desired in real-world applications
 - o Existing benchmarks focus on measuring accuracy of a random sample against groundtruth

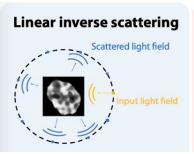


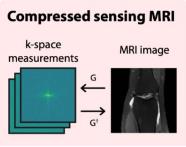
- Diffusion models provide potential sampling from posterior distribution
- Initial noise space of diffusion model offers an inherent (low-dimensional) latent structures of high-dimensional data!
- Uncertainty estimation is desired in real-world applications
 - Existing benchmarks focus on measuring accuracy of a random sample against groundtruth
 - Diffusion posterior sampling from initial noise space offers more statistical information about sampled posterior distribution

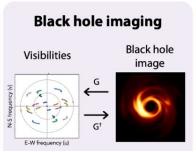
DAPS RED-diff PnP-DM DiffPIR DPS

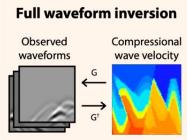
- Diffusion models provide sampling from posterior distribution
- Initial noise space of diffusion model offers an inherent low-dimensional latent structures of high-dimensional data!
- Scientific applications always require to control sampled data satisfying certain (physical) constraints

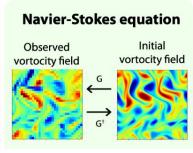
How to guarantee controllable and constrained sampling with diffusion models?











 Given a target image, how to conduct constrained sampling around target image with controlled mean and variance

Target Image

 Exploring initial noise perturbation with a controller algorithm can achieve this constrained sampling!

Target Image

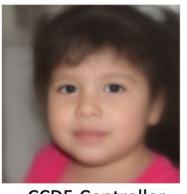
 Despite diverse samples, the sample mean closely matches the desired target image (at the constrained distance)

Target Image

Sample Mean

 Compared with other methods, CCS gives sample mean that better matches the desired target image (at the constrained distance)

DDS Cantuallan



DPS-Controller

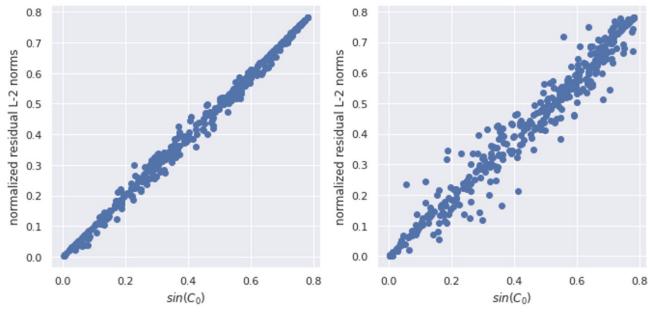
CCDF-Controller

CCS (Ours)-Controller

Target Mean

Controllable and Constrained Sampling with Diffusion Models

 Linearity between the magnitude of initial noise perturbation and sample-target image distance

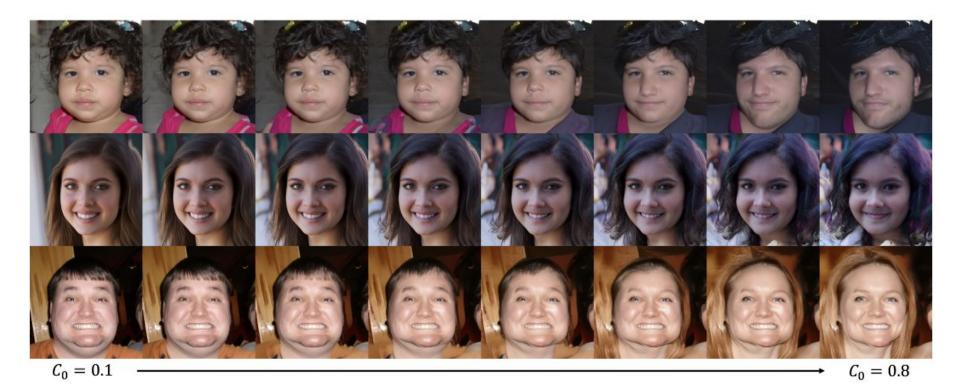


FFHQ dataset with pixel diffusion model

Celeba-HQ dataset with latent diffusion model

Controllable and Constrained Sampling with Diffusion Models

Linearity when increasing the magnitude of initial noise perturbation



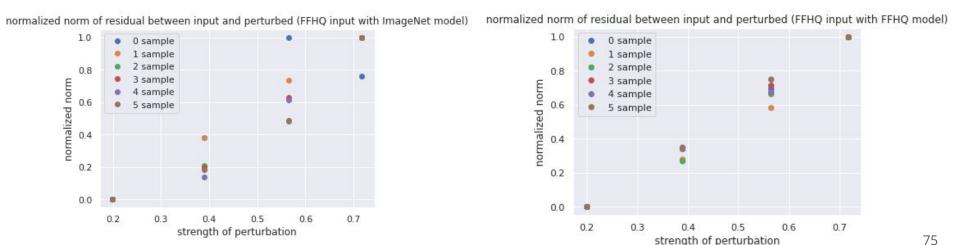
Song, et al., CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation, NeurIPS 2025

Implications of the Linearity Score

• However, the linearity of perturbation for different centers is different across initial noise manifold

Implications of the Linearity Score

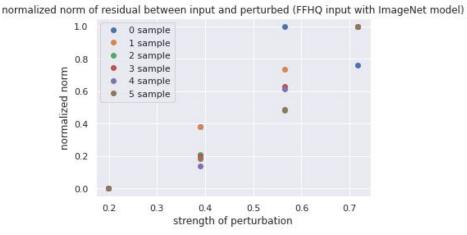
- However, the linearity of perturbation for different centers is different across initial noise manifold
- Out-of-distribution (OOD) data shows lower linearity score
 - OOD data lies on a low-probability manifold

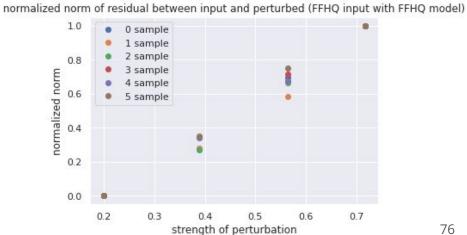


Song, et al., CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation, NeurIPS 2025

Implications of the Linearity Score

- However, the linearity of perturbation for different centers is different across initial noise manifold
- Out-of-distribution (OOD) data shows lower linearity score
 - OOD data lies on a low-probability manifold
- The linearity score reveals inherent properties for understanding the low-dimensional geometry of learned data manifold
 - Transition from memorization regime to generalization regime





76

Designing low-dimensional tokenizers

Pre-training considerations:

- Improved linearity enhances generalization capability
- Perturbation in latent space [1,2]

Post-training considerations:

- Improved linearity enhances controllability
- Decoder post-training for alignment [1,2]

^[2] Zheng, et al., Diffusion Transformers with Representation Autoencoders, arXiv 2025

Designing low-dimensional tokenizers

Pre-training considerations:

- Improved linearity enhances generalization capability
- Perturbation in latent space [1,2]

Post-training considerations:

- Improved linearity enhances controllability
- Decoder post-training for alignment [1,2]

More thoughts...

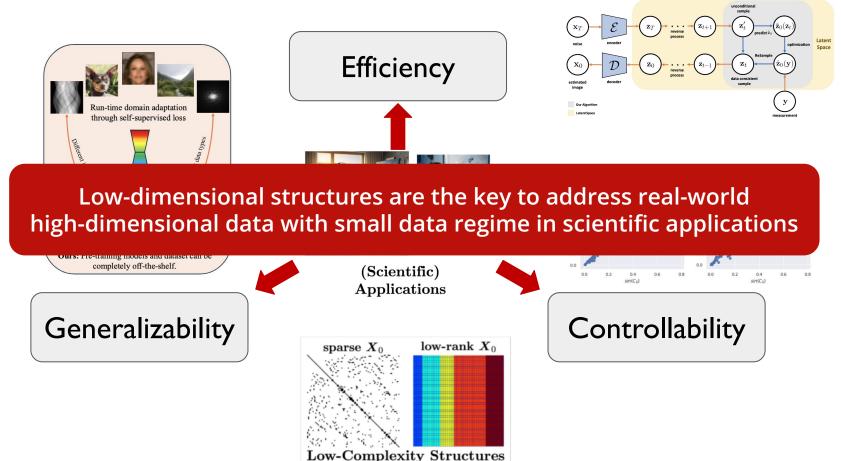
- Improving linearity as much as possible? No!
- If fully linear, a diffusion model collapses to a linear model
- Tradeoff between fine-details and controllability/generalizability

Our Blog Post:

^[1] Qiu, et al., Image Tokenizer Needs Post-Training, arXiv 2025

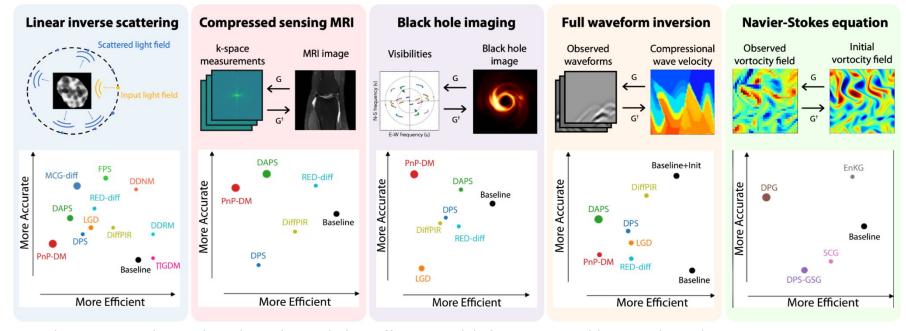
^[2] Zheng, et al., Diffusion Transformers with Representation Autoencoders, arXiv 2025

Challenges of Diffusion Inverse Solvers in Scientific Applications



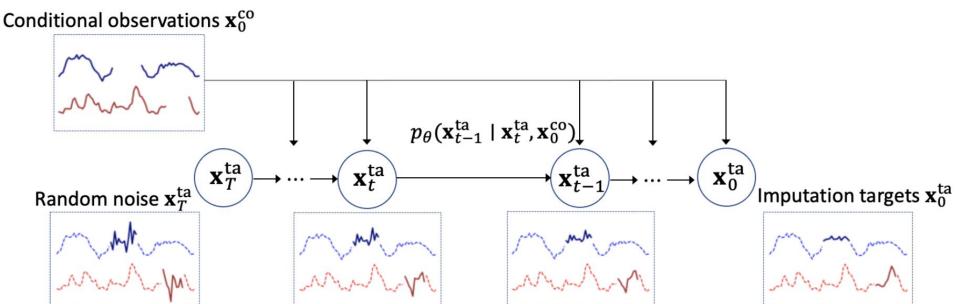
DIS for Solving Various Inverse Problems in Scientific Applications

- Computational imaging
- Dynamic systems
-



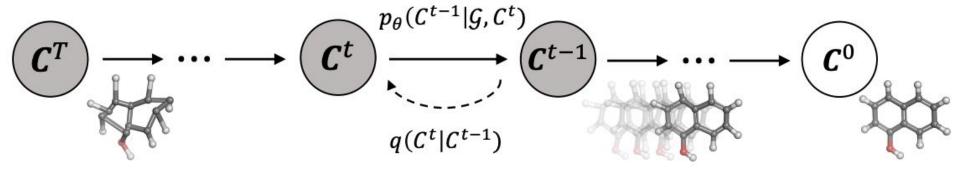
CSDI: Time Series Imputation

- Scientific applications in finance, meteorology and healthcare
-



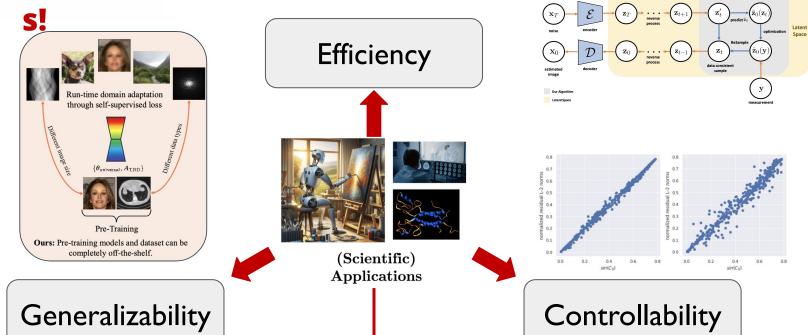
GeoDiff: Molecular Conformation Prediction

- Scientific applications in cheminformatics and drug discovery
-



Challenges of Diffusion Inverse Solvers in Scientific Applications

Opportunitie



Diffusion models can benefit numerous scientific applications!

Acknowledgement

Thanks!

- Support from the NSF, DARPA, Hyundai America Technical Center, Inc. (HATCI), Michigan MICDE Catalyst Grant, Michigan MIDAS PODS Grant
- All PhD/MS/UG students in the BioMed-Al Lab at U-M
- Collaborators at U-M EECS / BME / Radiology / Radiation Oncology...
- Contact: <u>liyues@umich.edu</u>

Jeff Fessler

Qing Qu

Bowen Song

Jason Hu

Chenwei Wu

Lixuan Chen

Soo-Min Kwon

HYUNDAI AMERICA TECHNICAL CENTER. INC.

